forked from DaehwanKimLab/centrifuge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aligner_bt.h
947 lines (869 loc) · 30.3 KB
/
aligner_bt.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
/*
* Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ALIGNER_BT_H_
#define ALIGNER_BT_H_
#include <utility>
#include <stdint.h>
#include "aligner_sw_common.h"
#include "aligner_result.h"
#include "scoring.h"
#include "edit.h"
#include "limit.h"
#include "dp_framer.h"
#include "sse_util.h"
/* Say we've filled in a DP matrix in a cost-only manner, not saving the scores
* for each of the cells. At the end, we obtain a list of candidate cells and
* we'd like to backtrace from them. The per-cell scores are gone, but we have
* to re-create the correct path somehow. Hopefully we can do this without
* recreating most or al of the score matrix, since this takes too much memory.
*
* Approach 1: Naively refill the matrix.
*
* Just refill the matrix, perhaps backwards starting from the backtrace cell.
* Since this involves recreating all or most of the score matrix, this is not
* a good approach.
*
* Approach 2: Naive backtracking.
*
* Conduct a search through the space of possible backtraces, rooted at the
* candidate cell. To speed things along, we can prioritize paths that have a
* high score and that align more characters from the read.
*
* The approach is simple, but it's neither fast nor memory-efficient in
* general.
*
* Approach 3: Refilling with checkpoints.
*
* Refill the matrix "backwards" starting from the candidate cell, but use
* checkpoints to ensure that only a series of relatively small triangles or
* rectangles need to be refilled. The checkpoints must include elements from
* the H, E and F matrices; not just H. After each refill, we backtrace
* through the refilled area, then discard/reuse the fill memory. I call each
* such fill/backtrace a mini-fill/backtrace.
*
* If there's only one path to be found, then this is O(m+n). But what if
* there are many? And what if we would like to avoid paths that overlap in
* one or more cells? There are two ways we can make this more efficient:
*
* 1. Remember the re-calculated E/F/H values and try to retrieve them
* 2. Keep a record of cells that have already been traversed
*
* Legend:
*
* 1: Candidate cell
* 2: Final cell from first mini-fill/backtrace
* 3: Final cell from second mini-fill/backtrace (third not shown)
* +: Checkpointed cell
* *: Cell filled from first or second mini-fill/backtrace
* -: Unfilled cell
*
* ---++--------++--------++----
* --++--------++*-------++-----
* -++--(etc)-++**------++------
* ++--------+3***-----++-------
* +--------++****----++--------
* --------++*****---++--------+
* -------++******--++--------++
* ------++*******-++*-------++-
* -----++********++**------++--
* ----++********2+***-----++---
* ---++--------++****----++----
* --++--------++*****---++-----
* -++--------++*****1--++------
* ++--------++--------++-------
*
* Approach 4: Backtracking with checkpoints.
*
* Conduct a search through the space of possible backtraces, rooted at the
* candidate cell. Use "checkpoints" to prune. That is, when a backtrace
* moves through a cell with a checkpointed score, consider the score
* accumulated so far and the cell's saved score; abort if those two scores
* add to something less than a valid score. Note we're only checkpointing H
* in this case (possibly; see "subtle point"), not E or F.
*
* Subtle point: checkpoint scores are a result of moving forward through
* the matrix whereas backtracking scores result from moving backward. This
* matters becuase the two paths that meet up at a cell might have both
* factored in a gap open penalty for the same gap, in which case we will
* underestimate the overall score and prune a good path. Here are two ideas
* for how to resolve this:
*
* Idea 1: when we combine the forward and backward scores to find an overall
* score, and our backtrack procedure *just* made a horizontal or vertical
* move, add in a "bonus" equal to the gap open penalty of the appropraite
* type (read gap open for horizontal, ref gap open for vertical). This might
* overcompensate, since
*
* Idea 2: keep the E and F values for the checkpoints around, in addition to
* the H values. When it comes time to combine the score from the forward
* and backward paths, we consider the last move we made in the backward
* backtrace. If it's a read gap (horizontal move), then we calculate the
* overall score as:
*
* max(Score-backward + H-forward, Score-backward + E-forward + read-open)
*
* If it's a reference gap (vertical move), then we calculate the overall
* score as:
*
* max(Score-backward + H-forward, Score-backward + F-forward + ref-open)
*
* What does it mean to abort a backtrack? If we're starting a new branch
* and there is a checkpoing in the bottommost cell of the branch, and the
* overall score is less than the target, then we can simply ignore the
* branch. If the checkpoint occurs in the middle of a string of matches, we
* need to curtail the branch such that it doesn't include the checkpointed
* cell and we won't ever try to enter the checkpointed cell, e.g., on a
* mismatch.
*
* Approaches 3 and 4 seem reasonable, and could be combined. For simplicity,
* we implement only approach 4 for now.
*
* Checkpoint information is propagated from the fill process to the backtracer
* via a
*/
enum {
BT_NOT_FOUND = 1, // could not obtain the backtrace because it
// overlapped a previous solution
BT_FOUND, // obtained a valid backtrace
BT_REJECTED_N, // backtrace rejected because it had too many Ns
BT_REJECTED_CORE_DIAG // backtrace rejected because it failed to overlap a
// core diagonal
};
/**
* Parameters for a matrix of potential backtrace problems to solve.
* Encapsulates information about:
*
* The problem given a particular reference substring:
*
* - The query string (nucleotides and qualities)
* - The reference substring (incl. orientation, offset into overall sequence)
* - Checkpoints (i.e. values of matrix cells)
* - Scoring scheme and other thresholds
*
* The problem given a particular reference substring AND a particular row and
* column from which to backtrace:
*
* - The row and column
* - The target score
*/
class BtBranchProblem {
public:
/**
* Create new uninitialized problem.
*/
BtBranchProblem() { reset(); }
/**
* Initialize a new problem.
*/
void initRef(
const char *qry, // query string (along rows)
const char *qual, // query quality string (along rows)
size_t qrylen, // query string (along rows) length
const char *ref, // reference string (along columns)
TRefOff reflen, // in-rectangle reference string length
TRefOff treflen,// total reference string length
TRefId refid, // reference id
TRefOff refoff, // reference offset
bool fw, // orientation of problem
const DPRect* rect, // dynamic programming rectangle filled out
const Checkpointer* cper, // checkpointer
const Scoring *sc, // scoring scheme
size_t nceil) // max # Ns allowed in alignment
{
qry_ = qry;
qual_ = qual;
qrylen_ = qrylen;
ref_ = ref;
reflen_ = reflen;
treflen_ = treflen;
refid_ = refid;
refoff_ = refoff;
fw_ = fw;
rect_ = rect;
cper_ = cper;
sc_ = sc;
nceil_ = nceil;
}
/**
* Initialize a new problem.
*/
void initBt(
size_t row, // row
size_t col, // column
bool fill, // use a filling rather than a backtracking strategy
bool usecp, // use checkpoints to short-circuit while backtracking
TAlScore targ) // target score
{
row_ = row;
col_ = col;
targ_ = targ;
fill_ = fill;
usecp_ = usecp;
if(fill) {
assert(usecp_);
}
}
/**
* Reset to uninitialized state.
*/
void reset() {
qry_ = qual_ = ref_ = NULL;
cper_ = NULL;
rect_ = NULL;
sc_ = NULL;
qrylen_ = reflen_ = treflen_ = refid_ = refoff_ = row_ = col_ = targ_ = nceil_ = 0;
fill_ = fw_ = usecp_ = false;
}
/**
* Return true iff the BtBranchProblem has been initialized.
*/
bool inited() const {
return qry_ != NULL;
}
#ifndef NDEBUG
/**
* Sanity-check the problem.
*/
bool repOk() const {
assert_gt(qrylen_, 0);
assert_gt(reflen_, 0);
assert_gt(treflen_, 0);
assert_lt(row_, qrylen_);
assert_lt((TRefOff)col_, reflen_);
return true;
}
#endif
size_t reflen() const { return reflen_; }
size_t treflen() const { return treflen_; }
protected:
const char *qry_; // query string (along rows)
const char *qual_; // query quality string (along rows)
size_t qrylen_; // query string (along rows) length
const char *ref_; // reference string (along columns)
TRefOff reflen_; // in-rectangle reference string length
TRefOff treflen_;// total reference string length
TRefId refid_; // reference id
TRefOff refoff_; // reference offset
bool fw_; // orientation of problem
const DPRect* rect_; // dynamic programming rectangle filled out
size_t row_; // starting row
size_t col_; // starting column
TAlScore targ_; // target score
const Checkpointer *cper_; // checkpointer
bool fill_; // use mini-fills
bool usecp_; // use checkpointing?
const Scoring *sc_; // scoring scheme
size_t nceil_; // max # Ns allowed in alignment
friend class BtBranch;
friend class BtBranchQ;
friend class BtBranchTracer;
};
/**
* Encapsulates a "branch" which is a diagonal of cells (possibly of length 0)
* in the matrix where all the cells are matches. These stretches are linked
* together by edits to form a full backtrace path through the matrix. Lengths
* are measured w/r/t to the number of rows traversed by the path, so a branch
* that represents a read gap extension could have length = 0.
*
* At the end of the day, the full backtrace path is represented as a list of
* BtBranch's where each BtBranch represents a stretch of matching cells (and
* up to one mismatching cell at its bottom extreme) ending in an edit (or in
* the bottommost row, in which case the edit is uninitialized). Each
* BtBranch's row and col fields indicate the bottommost cell involved in the
* diagonal stretch of matches, and the len_ field indicates the length of the
* stretch of matches. Note that the edits themselves also correspond to
* movement through the matrix.
*
* A related issue is how we record which cells have been visited so that we
* never report a pair of paths both traversing the same (row, col) of the
* overall DP matrix. This gets a little tricky because we have to take into
* account the cells covered by *edits* in addition to the cells covered by the
* stretches of matches. For instance: imagine a mismatch. That takes up a
* cell of the DP matrix, but it may or may not be preceded by a string of
* matches. It's hard to imagine how to represent this unless we let the
* mismatch "count toward" the len_ of the branch and let (row, col) refer to
* the cell where the mismatch occurs.
*
* We need BtBranches to "live forever" so that we can make some BtBranches
* parents of others using parent pointers. For this reason, BtBranch's are
* stored in an EFactory object in the BtBranchTracer class.
*/
class BtBranch {
public:
BtBranch() { reset(); }
BtBranch(
const BtBranchProblem& prob,
size_t parentId,
TAlScore penalty,
TAlScore score_en,
int64_t row,
int64_t col,
Edit e,
int hef,
bool root,
bool extend)
{
init(prob, parentId, penalty, score_en, row, col, e, hef, root, extend);
}
/**
* Reset to uninitialized state.
*/
void reset() {
parentId_ = 0;
score_st_ = score_en_ = len_ = row_ = col_ = 0;
curtailed_ = false;
e_.reset();
}
/**
* Caller gives us score_en, row and col. We figure out score_st and len_
* by comparing characters from the strings.
*/
void init(
const BtBranchProblem& prob,
size_t parentId,
TAlScore penalty,
TAlScore score_en,
int64_t row,
int64_t col,
Edit e,
int hef,
bool root,
bool extend);
/**
* Return true iff this branch ends in a solution to the backtrace problem.
*/
bool isSolution(const BtBranchProblem& prob) const {
const bool end2end = prob.sc_->monotone;
return score_st_ == prob.targ_ && (!end2end || endsInFirstRow());
}
/**
* Return true iff this branch could potentially lead to a valid alignment.
*/
bool isValid(const BtBranchProblem& prob) const {
int64_t scoreFloor = prob.sc_->monotone ? MIN_I64 : 0;
if(score_st_ < scoreFloor) {
// Dipped below the score floor
return false;
}
if(isSolution(prob)) {
// It's a solution, so it's also valid
return true;
}
if((int64_t)len_ > row_) {
// Went all the way to the top row
//assert_leq(score_st_, prob.targ_);
return score_st_ == prob.targ_;
} else {
int64_t match = prob.sc_->match();
int64_t bonusLeft = (row_ + 1 - len_) * match;
return score_st_ + bonusLeft >= prob.targ_;
}
}
/**
* Return true iff this branch overlaps with the given branch.
*/
bool overlap(const BtBranchProblem& prob, const BtBranch& bt) const {
// Calculate this branch's diagonal
assert_lt(row_, (int64_t)prob.qrylen_);
size_t fromend = prob.qrylen_ - row_ - 1;
size_t diag = fromend + col_;
int64_t lo = 0, hi = row_ + 1;
if(len_ == 0) {
lo = row_;
} else {
lo = row_ - (len_ - 1);
}
// Calculate other branch's diagonal
assert_lt(bt.row_, (int64_t)prob.qrylen_);
size_t ofromend = prob.qrylen_ - bt.row_ - 1;
size_t odiag = ofromend + bt.col_;
if(diag != odiag) {
return false;
}
int64_t olo = 0, ohi = bt.row_ + 1;
if(bt.len_ == 0) {
olo = bt.row_;
} else {
olo = bt.row_ - (bt.len_ - 1);
}
int64_t losm = olo, hism = ohi;
if(hi - lo < ohi - olo) {
swap(lo, losm);
swap(hi, hism);
}
if((lo <= losm && hi > losm) || (lo < hism && hi >= hism)) {
return true;
}
return false;
}
/**
* Return true iff this branch is higher priority than the branch 'o'.
*/
bool operator<(const BtBranch& o) const {
// Prioritize uppermost above score
if(uppermostRow() != o.uppermostRow()) {
return uppermostRow() < o.uppermostRow();
}
if(score_st_ != o.score_st_) return score_st_ > o.score_st_;
if(row_ != o.row_) return row_ < o.row_;
if(col_ != o.col_) return col_ > o.col_;
if(parentId_ != o.parentId_) return parentId_ > o.parentId_;
assert(false);
return false;
}
/**
* Return true iff the topmost cell involved in this branch is in the top
* row.
*/
bool endsInFirstRow() const {
assert_leq((int64_t)len_, row_ + 1);
return (int64_t)len_ == row_+1;
}
/**
* Return the uppermost row covered by this branch.
*/
size_t uppermostRow() const {
assert_geq(row_ + 1, (int64_t)len_);
return row_ + 1 - (int64_t)len_;
}
/**
* Return the leftmost column covered by this branch.
*/
size_t leftmostCol() const {
assert_geq(col_ + 1, (int64_t)len_);
return col_ + 1 - (int64_t)len_;
}
#ifndef NDEBUG
/**
* Sanity-check this BtBranch.
*/
bool repOk() const {
assert(root_ || e_.inited());
assert_gt(len_, 0);
assert_geq(col_ + 1, (int64_t)len_);
assert_geq(row_ + 1, (int64_t)len_);
return true;
}
#endif
protected:
// ID of the parent branch.
size_t parentId_;
// Penalty associated with the edit at the bottom of this branch (0 if
// there is no edit)
TAlScore penalty_;
// Score at the beginning of the branch
TAlScore score_st_;
// Score at the end of the branch (taking the edit into account)
TAlScore score_en_;
// Length of the branch. That is, the total number of diagonal cells
// involved in all the matches and in the edit (if any). Should always be
// > 0.
size_t len_;
// The row of the final (bottommost) cell in the branch. This might be the
// bottommost match if the branch has no associated edit. Otherwise, it's
// the cell occupied by the edit.
int64_t row_;
// The column of the final (bottommost) cell in the branch.
int64_t col_;
// The edit at the bottom of the branch. If this is the bottommost branch
// in the alignment and it does not end in an edit, then this remains
// uninitialized.
Edit e_;
// True iff this is the bottommost branch in the alignment. We can't just
// use row_ to tell us this because local alignments don't necessarily end
// in the last row.
bool root_;
bool curtailed_; // true -> pruned at a checkpoint where we otherwise
// would have had a match
friend class BtBranchQ;
friend class BtBranchTracer;
};
/**
* Instantiate and solve best-first branch-based backtraces.
*/
class BtBranchTracer {
public:
explicit BtBranchTracer() : //抑制隐式替换
prob_(), bs_(), seenPaths_(DP_CAT), sawcell_(DP_CAT), doTri_() { } // 初始化成员列表
/**
* Add a branch to the queue.
*/
void add(size_t id) {
assert(!bs_[id].isSolution(prob_));
unsorted_.push_back(make_pair(bs_[id].score_st_, id));
}
/**
* Add a branch to the list of solutions.
*/
void addSolution(size_t id) {
assert(bs_[id].isSolution(prob_));
solutions_.push_back(id);
}
/**
* Given a potential branch to add to the queue, see if we can follow the
* branch a little further first. If it's still valid, or if we reach a
* choice between valid outgoing paths, go ahead and add it to the queue.
*/
void examineBranch(
int64_t row,
int64_t col,
const Edit& e,
TAlScore pen,
TAlScore sc,
size_t parentId);
/**
* Take all possible ways of leaving the given branch and add them to the
* branch queue.
*/
void addOffshoots(size_t bid);
/**
* Get the best branch and remove it from the priority queue.
*/
size_t best(RandomSource& rnd) {
assert(!empty());
flushUnsorted();
assert_gt(sortedSel_ ? sorted1_.size() : sorted2_.size(), cur_);
// Perhaps shuffle everyone who's tied for first?
size_t id = sortedSel_ ? sorted1_[cur_] : sorted2_[cur_];
cur_++;
return id;
}
/**
* Return true iff there are no branches left to try.
*/
bool empty() const {
return size() == 0;
}
/**
* Return the size, i.e. the total number of branches contained.
*/
size_t size() const {
return unsorted_.size() +
(sortedSel_ ? sorted1_.size() : sorted2_.size()) - cur_;
}
/**
* Return true iff there are no solutions left to try.
*/
bool emptySolution() const {
return sizeSolution() == 0;
}
/**
* Return the size of the solution set so far.
*/
size_t sizeSolution() const {
return solutions_.size();
}
/**
* Sort unsorted branches, merge them with master sorted list.
*/
void flushUnsorted();
#ifndef NDEBUG
/**
* Sanity-check the queue.
*/
bool repOk() const {
assert_lt(cur_, (sortedSel_ ? sorted1_.size() : sorted2_.size()));
return true;
}
#endif
/**
* Initialize the tracer with respect to a new read. This involves
* resetting all the state relating to the set of cells already visited
*/
void initRef(
const char* rd, // in: read sequence
const char* qu, // in: quality sequence
size_t rdlen, // in: read sequence length
const char* rf, // in: reference sequence
size_t rflen, // in: in-rectangle reference sequence length
TRefOff trflen, // in: total reference sequence length
TRefId refid, // in: reference id
TRefOff refoff, // in: reference offset
bool fw, // in: orientation
const DPRect *rect, // in: DP rectangle
const Checkpointer *cper, // in: checkpointer
const Scoring& sc, // in: scoring scheme
size_t nceil) // in: N ceiling
{
prob_.initRef(rd, qu, rdlen, rf, rflen, trflen, refid, refoff, fw, rect, cper, &sc, nceil);
const size_t ndiag = rflen + rdlen - 1;
seenPaths_.resize(ndiag);
for(size_t i = 0; i < ndiag; i++) {
seenPaths_[i].clear();
}
// clear each of the per-column sets
if(sawcell_.size() < rflen) {
size_t isz = sawcell_.size();
sawcell_.resize(rflen);
for(size_t i = isz; i < rflen; i++) {
sawcell_[i].setCat(DP_CAT);
}
}
for(size_t i = 0; i < rflen; i++) {
sawcell_[i].setCat(DP_CAT);
sawcell_[i].clear(); // clear the set
}
}
/**
* Initialize with a new backtrace.
*/
void initBt(
TAlScore escore, // in: alignment score
size_t row, // in: start in this row
size_t col, // in: start in this column
bool fill, // in: use mini-filling?
bool usecp, // in: use checkpointing?
bool doTri, // in: triangle-shaped mini-fills?
RandomSource& rnd) // in: random gen, to choose among equal paths
{
prob_.initBt(row, col, fill, usecp, escore);
Edit e; e.reset();
unsorted_.clear();
solutions_.clear();
sorted1_.clear();
sorted2_.clear();
cur_ = 0;
nmm_ = 0; // number of mismatches attempted
nnmm_ = 0; // number of mismatches involving N attempted
nrdop_ = 0; // number of read gap opens attempted
nrfop_ = 0; // number of ref gap opens attempted
nrdex_ = 0; // number of read gap extensions attempted
nrfex_ = 0; // number of ref gap extensions attempted
nmmPrune_ = 0; // number of mismatches attempted
nnmmPrune_ = 0; // number of mismatches involving N attempted
nrdopPrune_ = 0; // number of read gap opens attempted
nrfopPrune_ = 0; // number of ref gap opens attempted
nrdexPrune_ = 0; // number of read gap extensions attempted
nrfexPrune_ = 0; // number of ref gap extensions attempted
row_ = row;
col_ = col;
doTri_ = doTri;
bs_.clear();
if(!prob_.fill_) {
size_t id = bs_.alloc();
bs_[id].init(
prob_,
0, // parent id
0, // penalty
0, // starting score
row, // row
col, // column
e,
0,
true, // this is the root
true); // this should be extend with exact matches
if(bs_[id].isSolution(prob_)) {
addSolution(id);
} else {
add(id);
}
} else {
int64_t row = row_, col = col_;
TAlScore targsc = prob_.targ_;
int hef = 0;
bool done = false, abort = false;
size_t depth = 0;
while(!done && !abort) {
// Accumulate edits as we go. We can do this by adding
// BtBranches to the bs_ structure. Each step of the backtrace
// either involves an edit (thereby starting a new branch) or
// extends the previous branch by one more position.
//
// Note: if the BtBranches are in line, then trySolution can be
// used to populate the SwResult and check for various
// situations where we might reject the alignment (i.e. due to
// a cell having been visited previously).
if(doTri_) {
triangleFill(
row, // row of cell to backtrace from
col, // column of cell to backtrace from
hef, // cell to bt from: H (0), E (1), or F (2)
targsc, // score of cell to backtrace from
prob_.targ_, // score of alignment we're looking for
rnd, // pseudo-random generator
row, // out: row we ended up in after bt
col, // out: column we ended up in after bt
hef, // out: H/E/F after backtrace
targsc, // out: score up to cell we ended up in
done, // out: finished tracing out an alignment?
abort); // out: aborted b/c cell was seen before?
} else {
squareFill(
row, // row of cell to backtrace from
col, // column of cell to backtrace from
hef, // cell to bt from: H (0), E (1), or F (2)
targsc, // score of cell to backtrace from
prob_.targ_, // score of alignment we're looking for
rnd, // pseudo-random generator
row, // out: row we ended up in after bt
col, // out: column we ended up in after bt
hef, // out: H/E/F after backtrace
targsc, // out: score up to cell we ended up in
done, // out: finished tracing out an alignment?
abort); // out: aborted b/c cell was seen before?
}
if(depth >= ndep_.size()) {
ndep_.resize(depth+1);
ndep_[depth] = 1;
} else {
ndep_[depth]++;
}
depth++;
assert((row >= 0 && col >= 0) || done);
}
}
ASSERT_ONLY(seen_.clear());
}
/**
* Get the next valid alignment given the backtrace problem. Return false
* if there is no valid solution, e.g., if
*/
bool nextAlignment(
size_t maxiter,
SwResult& res,
size_t& off,
size_t& nrej,
size_t& niter,
RandomSource& rnd);
/**
* Return true iff this tracer has been initialized
*/
bool inited() const {
return prob_.inited();
}
/**
* Return true iff the mini-fills are triangle-shaped.
*/
bool doTri() const { return doTri_; }
/**
* Fill in a triangle of the DP table and backtrace from the given cell to
* a cell in the previous checkpoint, or to the terminal cell.
*/
void triangleFill(
int64_t rw, // row of cell to backtrace from
int64_t cl, // column of cell to backtrace from
int hef, // cell to backtrace from is H (0), E (1), or F (2)
TAlScore targ, // score of cell to backtrace from
TAlScore targ_final, // score of alignment we're looking for
RandomSource& rnd, // pseudo-random generator
int64_t& row_new, // out: row we ended up in after backtrace
int64_t& col_new, // out: column we ended up in after backtrace
int& hef_new, // out: H/E/F after backtrace
TAlScore& targ_new, // out: score up to cell we ended up in
bool& done, // out: finished tracing out an alignment?
bool& abort); // out: aborted b/c cell was seen before?
/**
* Fill in a square of the DP table and backtrace from the given cell to
* a cell in the previous checkpoint, or to the terminal cell.
*/
void squareFill(
int64_t rw, // row of cell to backtrace from
int64_t cl, // column of cell to backtrace from
int hef, // cell to backtrace from is H (0), E (1), or F (2)
TAlScore targ, // score of cell to backtrace from
TAlScore targ_final, // score of alignment we're looking for
RandomSource& rnd, // pseudo-random generator
int64_t& row_new, // out: row we ended up in after backtrace
int64_t& col_new, // out: column we ended up in after backtrace
int& hef_new, // out: H/E/F after backtrace
TAlScore& targ_new, // out: score up to cell we ended up in
bool& done, // out: finished tracing out an alignment?
bool& abort); // out: aborted b/c cell was seen before?
protected:
/**
* Get the next valid alignment given a backtrace problem. Return false
* if there is no valid solution. Use a backtracking search to find the
* solution. This can be very slow.
*/
bool nextAlignmentBacktrace(
size_t maxiter,
SwResult& res,
size_t& off,
size_t& nrej,
size_t& niter,
RandomSource& rnd);
/**
* Get the next valid alignment given a backtrace problem. Return false
* if there is no valid solution. Use a triangle-fill backtrace to find
* the solution. This is usually fast (it's O(m + n)).
*/
bool nextAlignmentFill(
size_t maxiter,
SwResult& res,
size_t& off,
size_t& nrej,
size_t& niter,
RandomSource& rnd);
/**
* Try all the solutions accumulated so far. Solutions might be rejected
* if they, for instance, overlap a previous solution, have too many Ns,
* fail to overlap a core diagonal, etc.
*/
bool trySolutions(
bool lookForOlap,
SwResult& res,
size_t& off,
size_t& nrej,
RandomSource& rnd,
bool& success);
/**
* See if a given solution branch works as a solution (i.e. doesn't overlap
* another one, have too many Ns, fail to overlap a core diagonal, etc.)
*/
int trySolution(
size_t id,
bool lookForOlap,
SwResult& res,
size_t& off,
size_t& nrej,
RandomSource& rnd);
BtBranchProblem prob_; // problem configuration
EFactory<BtBranch> bs_; // global BtBranch factory
// already reported alignments going through these diagonal segments
ELList<std::pair<size_t, size_t> > seenPaths_;
ELSet<size_t> sawcell_; // cells already backtraced through
EList<std::pair<TAlScore, size_t> > unsorted_; // unsorted list of as-yet-unflished BtBranches
EList<size_t> sorted1_; // list of BtBranch, sorted by score
EList<size_t> sorted2_; // list of BtBranch, sorted by score
EList<size_t> solutions_; // list of solution branches
bool sortedSel_; // true -> 1, false -> 2
size_t cur_; // cursor into sorted list to start from
size_t nmm_; // number of mismatches attempted
size_t nnmm_; // number of mismatches involving N attempted
size_t nrdop_; // number of read gap opens attempted
size_t nrfop_; // number of ref gap opens attempted
size_t nrdex_; // number of read gap extensions attempted
size_t nrfex_; // number of ref gap extensions attempted
size_t nmmPrune_; //
size_t nnmmPrune_; //
size_t nrdopPrune_; //
size_t nrfopPrune_; //
size_t nrdexPrune_; //
size_t nrfexPrune_; //
size_t row_; // row
size_t col_; // column
bool doTri_; // true -> fill in triangles; false -> squares
EList<CpQuad> sq_; // square to fill when doing mini-fills
ELList<CpQuad> tri_; // triangle to fill when doing mini-fills
EList<size_t> ndep_; // # triangles mini-filled at various depths
#ifndef NDEBUG
ESet<size_t> seen_; // seedn branch ids; should never see same twice
#endif
};
#endif /*ndef ALIGNER_BT_H_*/