-
Notifications
You must be signed in to change notification settings - Fork 0
/
image_prediction_CIFAR.py
295 lines (235 loc) · 11 KB
/
image_prediction_CIFAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import tarfile
import pickle
import random
import numpy as np
import tensorflow as tf
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
cifar10_dataset_folder_path = 'cifar-10-batches-py'
class DownloadProgress(tqdm):
last_block = 0
def hook(self, block_num=1, block_size=1, total_size=None):
self.total = total_size
self.update((block_num - self.last_block) * block_size)
self.last_block = block_num
"""
check if the data (zip) file is already downloaded
if not, download it from "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" and save as cifar-10-python.tar.gz
"""
def load_label_names():
return ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
def load_cfar10_batch(cifar10_dataset_folder_path, batch_id):
with open(cifar10_dataset_folder_path + '/data_batch_' + str(batch_id), mode='rb') as file:
# note the encoding type is 'latin1'
batch = pickle.load(file, encoding='latin1')
features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1)
labels = batch['labels']
return features, labels
def display_stats(cifar10_dataset_folder_path, batch_id, sample_id):
features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_id)
if not (0 <= sample_id < len(features)):
print('{} samples in batch {}. {} is out of range.'.format(len(features), batch_id, sample_id))
return None
print('\nStats of batch #{}:'.format(batch_id))
print('# of Samples: {}\n'.format(len(features)))
label_names = load_label_names()
label_counts = dict(zip(*np.unique(labels, return_counts=True)))
for key, value in label_counts.items():
print('Label Counts of [{}]({}) : {}'.format(key, label_names[key].upper(), value))
sample_image = features[sample_id]
sample_label = labels[sample_id]
print('\nExample of Image {}:'.format(sample_id))
print('Image - Min Value: {} Max Value: {}'.format(sample_image.min(), sample_image.max()))
print('Image - Shape: {}'.format(sample_image.shape))
print('Label - Label Id: {} Name: {}'.format(sample_label, label_names[sample_label]))
def normalize(x):
"""
argument
- x: input image data in numpy array [32, 32, 3]
return
- normalized x
"""
min_val = np.min(x)
max_val = np.max(x)
x = (x-min_val) / (max_val-min_val)
return x
def one_hot_encode(x):
"""
argument
- x: a list of labels
return
- one hot encoding matrix (number of labels, number of class)
"""
encoded = np.zeros((len(x), 10))
for idx, val in enumerate(x):
encoded[idx][val] = 1
return encoded
def _preprocess_and_save(normalize, one_hot_encode, features, labels, filename):
features = normalize(features)
labels = one_hot_encode(labels)
pickle.dump((features, labels), open(filename, 'wb'))
def preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode):
n_batches = 5
valid_features = []
valid_labels = []
for batch_i in range(1, n_batches + 1):
features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_i)
# find index to be the point as validation data in the whole dataset of the batch (10%)
index_of_validation = int(len(features) * 0.1)
# preprocess the 90% of the whole dataset of the batch
# - normalize the features
# - one_hot_encode the lables
# - save in a new file named, "preprocess_batch_" + batch_number
# - each file for each batch
_preprocess_and_save(normalize, one_hot_encode,
features[:-index_of_validation], labels[:-index_of_validation],
'preprocess_batch_' + str(batch_i) + '.p')
# unlike the training dataset, validation dataset will be added through all batch dataset
# - take 10% of the whold dataset of the batch
# - add them into a list of
# - valid_features
# - valid_labels
valid_features.extend(features[-index_of_validation:])
valid_labels.extend(labels[-index_of_validation:])
# preprocess the all stacked validation dataset
_preprocess_and_save(normalize, one_hot_encode,
np.array(valid_features), np.array(valid_labels),
'preprocess_validation.p')
# load the test dataset
with open(cifar10_dataset_folder_path + '/test_batch', mode='rb') as file:
batch = pickle.load(file, encoding='latin1')
# preprocess the testing data
test_features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1)
test_labels = batch['labels']
# Preprocess and Save all testing data
_preprocess_and_save(normalize, one_hot_encode,
np.array(test_features), np.array(test_labels),
'preprocess_training.p')
def conv_net(x, keep_prob):
conv1_filter = tf.Variable(tf.truncated_normal(shape=[3, 3, 3, 64], mean=0, stddev=0.08))
conv2_filter = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 128], mean=0, stddev=0.08))
conv3_filter = tf.Variable(tf.truncated_normal(shape=[5, 5, 128, 256], mean=0, stddev=0.08))
conv4_filter = tf.Variable(tf.truncated_normal(shape=[5, 5, 256, 512], mean=0, stddev=0.08))
# 1, 2
conv1 = tf.nn.conv2d(x, conv1_filter, strides=[1,1,1,1], padding='SAME')
conv1 = tf.nn.relu(conv1)
conv1_pool = tf.nn.max_pool(conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
conv1_bn = tf.layers.batch_normalization(conv1_pool)
# 3, 4
conv2 = tf.nn.conv2d(conv1_bn, conv2_filter, strides=[1,1,1,1], padding='SAME')
conv2 = tf.nn.relu(conv2)
conv2_pool = tf.nn.max_pool(conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
conv2_bn = tf.layers.batch_normalization(conv2_pool)
# 5, 6
conv3 = tf.nn.conv2d(conv2_bn, conv3_filter, strides=[1,1,1,1], padding='SAME')
conv3 = tf.nn.relu(conv3)
conv3_pool = tf.nn.max_pool(conv3, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
conv3_bn = tf.layers.batch_normalization(conv3_pool)
# 7, 8
conv4 = tf.nn.conv2d(conv3_bn, conv4_filter, strides=[1,1,1,1], padding='SAME')
conv4 = tf.nn.relu(conv4)
conv4_pool = tf.nn.max_pool(conv4, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
conv4_bn = tf.layers.batch_normalization(conv4_pool)
# 9
flat = tf.contrib.layers.flatten(conv4_bn)
# 10
full1 = tf.contrib.layers.fully_connected(inputs=flat, num_outputs=128, activation_fn=tf.nn.relu)
full1 = tf.nn.dropout(full1, keep_prob)
full1 = tf.layers.batch_normalization(full1)
# 11
full2 = tf.contrib.layers.fully_connected(inputs=full1, num_outputs=256, activation_fn=tf.nn.relu)
full2 = tf.nn.dropout(full2, keep_prob)
full2 = tf.layers.batch_normalization(full2)
# 12
full3 = tf.contrib.layers.fully_connected(inputs=full2, num_outputs=512, activation_fn=tf.nn.relu)
full3 = tf.nn.dropout(full3, keep_prob)
full3 = tf.layers.batch_normalization(full3)
# 13
full4 = tf.contrib.layers.fully_connected(inputs=full3, num_outputs=1024, activation_fn=tf.nn.relu)
full4 = tf.nn.dropout(full4, keep_prob)
full4 = tf.layers.batch_normalization(full4)
# 14
out = tf.contrib.layers.fully_connected(inputs=full3, num_outputs=10, activation_fn=None)
return out
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
session.run(optimizer,
feed_dict={
x: feature_batch,
y: label_batch,
keep_prob: keep_probability
})
def print_stats(session, feature_batch, label_batch, cost, accuracy):
loss = sess.run(cost,
feed_dict={
x: feature_batch,
y: label_batch,
keep_prob: 1.
})
valid_acc = sess.run(accuracy,
feed_dict={
x: valid_features,
y: valid_labels,
keep_prob: 1.
})
print('Loss: {:>10.4f} Validation Accuracy: {:.6f}'.format(loss, valid_acc))
def main():
# Download the dataset (if not exist yet)
if not isfile('cifar-10-python.tar.gz'):
with DownloadProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
urlretrieve(
'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
'cifar-10-python.tar.gz',
pbar.hook)
if not isdir(cifar10_dataset_folder_path):
with tarfile.open('cifar-10-python.tar.gz') as tar:
tar.extractall()
tar.close()
# Explore the dataset
batch_id = 3
sample_id = 7000
display_stats(cifar10_dataset_folder_path, batch_id, sample_id)
# Preprocess all the data and save it
preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)
# load the saved dataset
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))
# Hyper parameters
epochs = 10
batch_size = 128
keep_probability = 0.7
learning_rate = 0.001
# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()
# Inputs
x = tf.placeholder(tf.float32, shape=(None, 32, 32, 3), name='input_x')
y = tf.placeholder(tf.float32, shape=(None, 10), name='output_y')
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
# Build model
logits = conv_net(x, keep_prob)
model = tf.identity(logits, name='logits') # Name logits Tensor, so that can be loaded from disk after training
# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')
# Training Phase
save_model_path = './image_classification'
print('Training...')
with tf.Session() as sess:
# Initializing the variables
sess.run(tf.global_variables_initializer())
# Training cycle
for epoch in range(epochs):
# Loop over all batches
n_batches = 5
for batch_i in range(1, n_batches + 1):
for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='')
print_stats(sess, batch_features, batch_labels, cost, accuracy)
# Save Model
saver = tf.train.Saver()
save_path = saver.save(sess, save_model_path)
if __name__ == "__main__":
main()