forked from fei-aiart/NAS-Lung
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transforms.py
471 lines (380 loc) · 15.3 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
from __future__ import division
import torch
import math
import random
from PIL import Image, ImageOps
try:
import accimage
except ImportError:
accimage = None
import numpy as np
import numbers
import types
import collections
from torch.autograd import Variable
torch.cuda.set_device(0)
def resample3d(inp, inp_space, out_space=(1, 1, 1)):
# Infer new shape
# inp = torch.from_numpy(inp)
# inp=torch.FloatTensor(inp)
# inp=Variable(inp)
inp = inp.cuda()
out = resample1d(inp, inp_space[2], out_space[2]).permute(0, 2, 1)
out = resample1d(out, inp_space[1], out_space[1]).permute(2, 1, 0)
out = resample1d(out, inp_space[0], out_space[0]).permute(2, 0, 1)
return out
def resample1d(inp, inp_space, out_space=1):
# Output shape
print(inp.size(), inp_space, out_space)
out_shape = list(np.int64(inp.size()[:-1])) + [
int(np.floor(inp.size()[-1] * inp_space / out_space))] # Optional for if we expect a float_tensor
out_shape = [int(item) for item in out_shape]
# Get output coordinates, deltas, and t (chord distances)
# torch.cuda.set_device(inp.get_device())
# Output coordinates in real space
coords = torch.cuda.HalfTensor(range(out_shape[-1])) * out_space
delta = coords.fmod(inp_space).div(inp_space).repeat(out_shape[0], out_shape[1], 1)
t = torch.cuda.HalfTensor(4, out_shape[0], out_shape[1], out_shape[2]).zero_()
t[0] = 1
t[1] = delta
t[2] = delta ** 2
t[3] = delta ** 3
# Nearest neighbours indices
nn = coords.div(inp_space).floor().long()
# Stack the nearest neighbors into P, the Points Array
P = torch.cuda.HalfTensor(4, out_shape[0], out_shape[1], out_shape[2]).zero_()
for i in range(-1, 3):
P[i + 1] = inp.index_select(2, torch.clamp(nn + i, 0, inp.size()[-1] - 1))
# Take catmull-rom spline interpolation:
return 0.5 * t.mul(torch.cuda.HalfTensor([[0, 2, 0, 0],
[-1, 0, 1, 0],
[2, -5, 4, -1],
[-1, 3, -3, 1]]).mm(P.view(4, -1)) \
.view(4,
out_shape[0],
out_shape[1],
out_shape[2])) \
.sum(0) \
.squeeze()
class Compose(object):
"""Composes several transforms together.
Args:
transforms (list of ``Transform`` objects): list of transforms to compose.
Example:
>>> transforms.Compose([
>>> transforms.CenterCrop(10),
>>> transforms.ToTensor(),
>>> ])
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img):
for t in self.transforms:
# print(t)
img = t(img)
return img
class Normalize(object):
"""Normalize an tensor image with mean and standard deviation.
Given mean: (R, G, B) and std: (R, G, B),
will normalize each channel of the torch.*Tensor, i.e.
channel = (channel - mean) / std
Args:
mean (sequence): Sequence of means for R, G, B channels respecitvely.
std (sequence): Sequence of standard deviations for R, G, B channels
respecitvely.
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized image.
"""
# TODO: make efficient
# for t, m, s in zip(tensor, self.mean, self.std):
tensor.sub_(self.mean).div_(self.std)
return tensor
from scipy.ndimage.interpolation import zoom
class RandomScale(object):
''' Randomly scale from scale size list '''
def __init__(self, size, interpolation=Image.BILINEAR):
# assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 3)
self.size = size
self.interpolation = interpolation
def __call__(self, img):
# scale = np.random.permutation(len(self.size))[0] / 32.0
scale = random.randint(self.size[0],
self.size[-1] + 1) # (self.size[np.random.permutation(len(self.size))[0]])#, \
# self.size[np.random.permutation(len(self.size))[0]], \
# self.size[np.random.permutation(len(self.size))[0]])
# print img.shape, scale, img.shape*scale
# print('scale', 32.0/scale)
return zoom(img, (scale, scale, scale),
mode='nearest') # resample3d(img,(32,32,32),out_space=scale)#zoom(img, scale) #img.resize(scale, self.interpolation) resample3d(img,img.shape,out_space=scale)
class Scale(object):
"""Rescale the input PIL.Image to the given size.
Args:
size (sequence or int): Desired output size. If size is a sequence like
(w, h), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (int, optional): Desired interpolation. Default is
``PIL.Image.BILINEAR``
"""
def __init__(self, size, interpolation=Image.BILINEAR):
assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 3)
self.size = size
self.interpolation = interpolation
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be scaled.
Returns:
PIL.Image: Rescaled image.
"""
if isinstance(self.size, int):
w, h, d = img.size
if (w <= h and w == self.size) or (h <= w and h == self.size):
return img
if w < h:
ow = self.size
oh = int(self.size * h / w)
return img.resize((ow, oh), self.interpolation)
else:
oh = self.size
ow = int(self.size * w / h)
return img.resize((ow, oh), self.interpolation)
else:
return img.resize(self.size, self.interpolation)
class ZeroOut(object):
"""Crops the given PIL.Image at the center.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (w, h), a square crop (size, size) is
made.
"""
def __init__(self, size):
self.size = int(size)
def __call__(self, img):
w, h, d = img.shape # size
x1 = random.randint(0, w - self.size) # np.random.permutation(w-self.size)[0]
y1 = random.randint(0, h - self.size) # np.random.permutation(h-self.size)[0]
z1 = random.randint(0, d - self.size) # np.random.permutation(d-self.size)[0]
img1 = np.array(img)
# print 'zero out', x1, y1, z1, w, h, d, self.size
img1[x1:x1 + self.size, y1:y1 + self.size, z1:z1 + self.size] = np.array(
np.zeros((self.size, self.size, self.size)))
return np.array(img1)
class ToTensor(object):
"""Convert a ``PIL.Image`` or ``numpy.ndarray`` to tensor.
Converts a PIL.Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
"""
def __call__(self, pic):
"""
Args:
pic (PIL.Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if isinstance(pic, np.ndarray):
# handle numpy array
pic = np.expand_dims(pic, -1)
# print('before tensor', pic.shape)
img = torch.from_numpy(pic.transpose((3, 0, 1, 2)))
# backward compatibility
return img.float() # .div(255)
if accimage is not None and isinstance(pic, accimage.Image):
nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
pic.copyto(nppic)
return torch.from_numpy(nppic)
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
else:
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
if isinstance(img, torch.ByteTensor):
return img.float() # .div(255)
else:
return img
class CenterCrop(object):
"""Crops the given PIL.Image at the center.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (w, h), a square crop (size, size) is
made.
"""
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be cropped.
Returns:
PIL.Image: Cropped image.
"""
w, h = img.size
th, tw = self.size
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
return img.crop((x1, y1, x1 + tw, y1 + th))
class Pad(object):
"""Pad the given PIL.Image on all sides with the given "pad" value.
Args:
padding (int or sequence): Padding on each border. If a sequence of
length 4, it is used to pad left, top, right and bottom borders respectively.
fill: Pixel fill value. Default is 0.
"""
def __init__(self, padding, fill=0):
assert isinstance(padding, numbers.Number)
assert isinstance(fill, numbers.Number) or isinstance(fill, str) or isinstance(fill, tuple)
self.padding = padding
self.fill = fill
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be padded.
Returns:
PIL.Image: Padded image.
"""
return ImageOps.expand(img, border=self.padding, fill=self.fill)
class Lambda(object):
"""Apply a user-defined lambda as a transform.
Args:
lambd (function): Lambda/function to be used for transform.
"""
def __init__(self, lambd):
assert isinstance(lambd, types.LambdaType)
self.lambd = lambd
def __call__(self, img):
return self.lambd(img)
class RandomCrop(object):
"""Crop the given PIL.Image at a random location.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (w, h), a square crop (size, size) is
made.
padding (int or sequence, optional): Optional padding on each border
of the image. Default is 0, i.e no padding. If a sequence of length
4 is provided, it is used to pad left, top, right, bottom borders
respectively.
"""
def __init__(self, size, padding=0):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size), int(size))
else:
self.size = int(size)
self.padding = int(padding)
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be cropped.
Returns:
PIL.Image: Cropped image.
"""
if self.padding > 0:
# print 'scale out', img.shape
pad = int(self.padding / 2)
img1 = np.ones((img.shape[0] + pad, img.shape[1] + pad, img.shape[2] + pad)) * 170
bg = int(self.padding / 2)
img1[bg:bg + img.shape[0], bg:bg + img.shape[1], bg:bg + img.shape[2]] = np.array(img)
img = np.array(img1)
# img = ImageOps.expand(img, border=self.padding, fill=170)
w, h, d = img.shape # size
th, tw, td = self.size
# print 'pad out', w, h, d, th, tw, td
if w == tw and h == th and d == td:
return img
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
z1 = random.randint(0, d - td)
return np.array(img[x1:x1 + th, y1:y1 + tw, z1:z1 + td])
# return img.crop((x1, y1, x1 + tw, y1 + th, z1 + td))
class RandomHorizontalFlip(object):
"""Horizontally flip the given PIL.Image randomly with a probability of 0.5."""
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Randomly flipped image.
"""
if random.random() < 0.5:
return np.array(img[:, :, ::-1]) # .transpose(Image.FLIP_LEFT_RIGHT)
return img
class RandomZFlip(object):
"""Horizontally flip the given PIL.Image randomly with a probability of 0.5."""
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Randomly flipped image.
"""
if random.random() < 0.5:
return np.array(img[::-1, :, :])
return img
class RandomYFlip(object):
"""Horizontally flip the given PIL.Image randomly with a probability of 0.5."""
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Randomly flipped image.
"""
if random.random() < 0.5:
return np.array(img[:, ::-1, :])
return img
class RandomSizedCrop(object):
"""Crop the given PIL.Image to random size and aspect ratio.
A crop of random size of (0.08 to 1.0) of the original size and a random
aspect ratio of 3/4 to 4/3 of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size: size of the smaller edge
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(self, size, interpolation=Image.BILINEAR):
self.size = size
self.interpolation = interpolation
def __call__(self, img):
for attempt in range(10):
area = img.size[0] * img.size[1]
target_area = random.uniform(0.08, 1.0) * area
aspect_ratio = random.uniform(3. / 4, 4. / 3)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img.size[0] and h <= img.size[1]:
x1 = random.randint(0, img.size[0] - w)
y1 = random.randint(0, img.size[1] - h)
img = img.crop((x1, y1, x1 + w, y1 + h))
assert (img.size == (w, h))
return img.resize((self.size, self.size), self.interpolation)
# Fallback
scale = Scale(self.size, interpolation=self.interpolation)
crop = CenterCrop(self.size)
return crop(scale(img))