-
Notifications
You must be signed in to change notification settings - Fork 0
/
mobius function.cpp
61 lines (53 loc) · 1.21 KB
/
mobius function.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
//
// mobius function
//
/*
For any positive integer n, define mui(n) as the
sum of the primitive nth roots of unity. it has values
in (-1, 0, 1) depending on the factorization of n into prime factors.
-> mu(n) = 1 if n is a square free integer with an even number
of prime factors.
-> mu(n) = -1 if n is a square free positive integer with an
odd number of prime factors.
-> mu(n) = 0 if n has a squared prime factor.
*/
#include <bits/stdc++.h>
using namespace std;
using namespace placeholders;
#define ll long long
const int n = 1000000;
int a[n], prime_count[n], mobius[n];
void cal_mobius() {
for (int i = 1; i < n; i++) {
a[i] = 1;
}
for (int i = 2; i < n; i++) {
if (prime_count[i]) continue;
for (int j = i; j < n; j += i) {
prime_count[j] ++;
a[j] *= i;
}
}
for (int i = 1; i < n; ++i) {
if (a[i] == i) {
// square free number
if (prime_count[i] % 2 == 1) mobius[i] = -1;
else mobius[i] = 1;
}
else {
mobius[i] = 0;
}
}
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
cal_mobius();
for (int i = 0; i < n; ++i) {
cout << mobius[i] << " ";
}
}