-
Notifications
You must be signed in to change notification settings - Fork 20
/
train.py
419 lines (393 loc) · 20.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
from typing import List
import flair
from flair.data import Dictionary, Sentence, Token, Label
#from flair.datasets import CONLL_03, CONLL_03_DUTCH, CONLL_03_SPANISH, CONLL_03_GERMAN
import flair.datasets as datasets
from flair.data import MultiCorpus, Corpus
from flair.list_data import ListCorpus
import flair.embeddings as Embeddings
from flair.training_utils import EvaluationMetric
from flair.visual.training_curves import Plotter
# initialize sequence tagger
from flair.models import SequenceTagger
from pathlib import Path
import argparse
import yaml
from flair.utils.from_params import Params
# from flair.trainers import ModelTrainer
# from flair.trainers import ModelDistiller
# from flair.trainers import ModelFinetuner
from flair.config_parser import ConfigParser
import pdb
import sys
import os
import logging
from flair.custom_data_loader import ColumnDataLoader
from flair.datasets import DataLoader
# Disable
def blockPrint():
sys.stdout = open(os.devnull, 'w')
# Restore
def enablePrint():
sys.stdout = sys.__stdout__
parser = argparse.ArgumentParser('train.py')
parser.add_argument('--config', help='configuration YAML file.')
parser.add_argument('--test', action='store_true', help='Whether testing the pretrained model.')
parser.add_argument('--zeroshot', action='store_true', help='testing with zeroshot corpus.')
parser.add_argument('--all', action='store_true', help='training/testing with all corpus.')
parser.add_argument('--other', action='store_true', help='training/testing with other corpus.')
parser.add_argument('--quiet', action='store_true', help='print results only')
parser.add_argument('--nocrf', action='store_true', help='without CRF')
parser.add_argument('--parse', action='store_true', help='parse files')
parser.add_argument('--parse_train_and_dev', action='store_true', help='chech the performance on the training and development sets')
parser.add_argument('--keep_order', action='store_true', help='keep the parse order for the prediction')
parser.add_argument('--predict', action='store_true', help='predict files')
parser.add_argument('--debug', action='store_true', help='debugging')
parser.add_argument('--target_dir', default='', help='file dir to parse')
parser.add_argument('--spliter', default='\t', help='file dir to parse')
parser.add_argument('--recur_parse', action='store_true', help='recursively parse the file dirs in target_dir')
parser.add_argument('--parse_test', action='store_true', help='parse the test set')
parser.add_argument('--save_embedding', action='store_true', help='save the pretrained embeddings')
parser.add_argument('--mst', action='store_true', help='use mst to parse the result')
parser.add_argument('--test_speed', action='store_true', help='test the running speed')
parser.add_argument('--predict_posterior', action='store_true', help='predict the posterior distribution of CRF model')
parser.add_argument('--batch_size', default=-1, help='manually setting the mini batch size for testing')
parser.add_argument('--keep_embedding', default=-1, help='mask out all embeddings except the index, for analysis')
parser.add_argument('--remove_x', action='store_true', help='forcing the remove_x to be activated, for analysis')
parser.add_argument('--v2doc', action='store_true', help='use v2_doc for transformers to parse long sentences')
parser.add_argument('--eval_train', action='store_true', help='for analysis')
parser.add_argument('--num_columns', type=int, default = 2, help='for prediction')
parser.add_argument('--comment_symbol', type=str, default = None, help='for analysis')
parser.add_argument('--parse_name', default = '', help='for naming the output file')
parser.add_argument('--output_dir', default = 'outputs', help='for naming the output dir')
def count_parameters(model):
import numpy as np
total_param = 0
for name,param in model.named_parameters():
num_param = np.prod(param.size())
# print(name,num_param)
total_param+=num_param
return total_param
log = logging.getLogger("flair")
args = parser.parse_args()
if args.quiet:
blockPrint()
log.disabled=True
config = Params.from_file(args.config)
if args.test and args.zeroshot:
temperory_reject_list=['ast','enhancedud','dependency','atis','chunk']
if config['targets'] in temperory_reject_list:
enablePrint()
print()
exit()
# pdb.set_trace()
config = ConfigParser(config,all=args.all,zero_shot=args.zeroshot,other_shot=args.other,predict=args.predict, save_embedding = args.save_embedding)
# pdb.set_trace()
student=config.create_student(nocrf=args.nocrf)
log.info(f"Model Size: {count_parameters(student)}")
corpus=config.corpus
teacher_func=config.create_teachers
if 'is_teacher_list' in config.config:
if config.config['is_teacher_list']:
teacher_func=config.create_teachers_list
# pdb.set_trace()
if 'trainer' in config.config:
trainer_name=config.config['trainer']
else:
if 'ModelDistiller' in config.config:
trainer_name='ModelDistiller'
elif 'ModelFinetuner' in config.config:
trainer_name='ModelFinetuner'
elif 'ReinforcementTrainer' in config.config:
trainer_name='ReinforcementTrainer'
else:
trainer_name='ModelDistiller'
if not args.save_embedding:
trainer_func=getattr(flair.trainers,trainer_name)
if 'distill_mode' not in config.config[trainer_name]:
config.config[trainer_name]['distill_mode']=False
if not args.test and config.config[trainer_name]['distill_mode']:
teachers=teacher_func()
professors=[]
# corpus=config.distill_teachers_prediction()
trainer: trainer_func = trainer_func(student, teachers, corpus, config=config.config, professors=professors,**config.config[trainer_name])
elif not args.parse:
trainer: trainer_func = trainer_func(student, None, corpus, config=config.config, **config.config[trainer_name], is_test=args.test)
else:
trainer: trainer_func = trainer_func(student, None, corpus, config=config.config, **config.config[trainer_name], is_test=args.test)
# pdb.set_trace()
train_config=config.config['train']
train_config['base_path']=config.get_target_path
# train_config['shuffle']=False
eval_mini_batch_size = int(config.config['train']['mini_batch_size'])
# if args.parse or args.test:
# if 'sentence_level_batch' in config.config[trainer_name] and config.config[trainer_name]['sentence_level_batch']:
# eval_mini_batch_size = 2000
# pdb.set_trace()
if int(args.batch_size)>0:
eval_mini_batch_size = int(args.batch_size)
if args.test_speed:
student.eval()
# pdb.set_trace()
print(count_parameters(student))
# for embedding in student.embeddings.embeddings:
# embedding.training = False
test_loader=ColumnDataLoader(list(trainer.corpus.test),32,use_bert=trainer.use_bert,tokenizer=trainer.bert_tokenizer, sort_data=False, model = student, sentence_level_batch = True)
test_loader.assign_tags(student.tag_type,student.tag_dictionary)
train_eval_result, train_loss = student.evaluate(test_loader,embeddings_storage_mode='none',speed_test=True)
# print('Current accuracy: ' + str(train_eval_result.main_score*100))
# print(train_eval_result.detailed_results)
elif args.test:
student.eval()
trainer.embeddings_storage_mode = 'cpu'
trainer.final_test(
config.get_target_path,
eval_mini_batch_size=eval_mini_batch_size,
overall_test=True if int(args.keep_embedding)<0 else False,
quiet_mode=args.quiet,
nocrf=args.nocrf,
# debug=args.debug,
# keep_embedding = int(args.keep_embedding),
predict_posterior=args.predict_posterior,
sort_data = not args.keep_order,
eval_train = args.eval_train,
)
elif args.parse or args.save_embedding:
print('Batch Size:',eval_mini_batch_size)
base_path=Path(config.config['target_dir'])/config.config['model_name']
if (base_path / "best-model.pt").exists():
print('Loading pretraining best model')
if trainer_name == 'ReinforcementTrainer':
student = student.load(base_path / "best-model.pt", device='cpu')
for name, module in student.named_modules():
if 'embeddings' in name or name == '':
continue
else:
module.to(flair.device)
for name, module in student.named_parameters():
module.to(flair.device)
else:
student = student.load(base_path / "best-model.pt")
elif (base_path / "final-model.pt").exists():
print('Loading pretraining final model')
student = student.load(base_path / "final-model.pt")
else:
assert 0, str(base_path)+ ' not exist!'
for embedding in student.embeddings.embeddings:
# manually fix the bug for the tokenizer becoming None
if hasattr(embedding,'tokenizer') and embedding.tokenizer is None:
from transformers import AutoTokenizer
name = embedding.name
if '_v2doc' in name:
name = name.replace('_v2doc','')
if '_extdoc' in name:
name = name.replace('_extdoc','')
embedding.tokenizer = AutoTokenizer.from_pretrained(name)
if hasattr(embedding,'model') and hasattr(embedding.model,'encoder') and not hasattr(embedding.model.encoder,'config'):
embedding.model.encoder.config = embedding.model.config
if args.remove_x:
student.remove_x = True
student.tag_dictionary.add_item("S-X")
if trainer_name == 'ReinforcementTrainer':
import torch
training_state = torch.load(base_path/'training_state.pt')
start_episode = training_state['episode']
student.selection = training_state['best_action']
name_list=sorted([x.name for x in student.embeddings.embeddings])
print(name_list)
print(f"Setting embedding mask to the best action: {student.selection}")
embedlist = sorted([(embedding.name, embedding) for embedding in student.embeddings.embeddings], key = lambda x: x[0])
for idx, embedding_tuple in enumerate(embedlist):
embedding = embedding_tuple[1]
if args.v2doc:
embedding.v2_doc=True
if student.selection[idx] == 1:
embedding.to(flair.device)
if 'elmo' in embedding.name and (not hasattr(embedding,'is_hit_elmo') or embedding.is_hit_elmo == False):
# embedding.reset_elmo()
# continue
# pdb.set_trace()
embedding.ee.elmo_bilm.cuda(device=embedding.ee.cuda_device)
states=[x.to(flair.device) for x in embedding.ee.elmo_bilm._elmo_lstm._states]
embedding.ee.elmo_bilm._elmo_lstm._states = states
for idx in range(len(embedding.ee.elmo_bilm._elmo_lstm._states)):
embedding.ee.elmo_bilm._elmo_lstm._states[idx]=embedding.ee.elmo_bilm._elmo_lstm._states[idx].to(flair.device)
else:
embedding.to('cpu')
for name, module in student.named_modules():
if 'embeddings' in name or name == '':
continue
else:
module.to(flair.device)
parameters = [x for x in student.named_parameters()]
for parameter in parameters:
name = parameter[0]
module = parameter[1]
module.data.to(flair.device)
if '.' not in name:
if type(getattr(student, name))==torch.nn.parameter.Parameter:
setattr(student, name, torch.nn.parameter.Parameter(getattr(student,name).to(flair.device)))
# pdb.set_trace()
if args.save_embedding:
for embedding in student.embeddings.embeddings:
if hasattr(embedding,'fine_tune') and embedding.fine_tune:
if not os.path.exists(base_path/embedding.name.split('/')[-1]):
os.mkdir(base_path/embedding.name.split('/')[-1])
embedding.tokenizer.save_pretrained(base_path/embedding.name.split('/')[-1])
embedding.model.save_pretrained(base_path/embedding.name.split('/')[-1])
exit()
if not hasattr(student,'use_bert'):
student.use_bert=False
if hasattr(student,'word_map'):
word_map = student.word_map
else:
word_map = None
if hasattr(student,'char_map'):
char_map = student.char_map
else:
char_map = None
if args.mst:
student.is_mst=True
if args.parse_train_and_dev:
print('Current Model: ', config.config['model_name'])
print('Current Set: ', 'dev')
if not os.path.exists('system_pred'):
os.mkdir('system_pred')
for index, subcorpus in enumerate(corpus.dev_list):
# log_line(log)
# log.info('current corpus: '+self.corpus.targets[index])
if len(subcorpus)==0:
continue
print('Current Lang: ', corpus.targets[index])
loader=ColumnDataLoader(list(subcorpus),eval_mini_batch_size,use_bert=student.use_bert, model = student, sort_data = not args.keep_order, sentence_level_batch = config.config[trainer_name]['sentence_level_batch'] if 'sentence_level_batch' in config.config[trainer_name] else True)
loader.assign_tags(student.tag_type,student.tag_dictionary)
train_eval_result, train_loss = student.evaluate(loader,embeddings_storage_mode='none',
out_path=Path('system_pred/dev.'+config.config['model_name']+'.conllu'),)
print('Current accuracy: ' + str(train_eval_result.main_score*100))
print(train_eval_result.detailed_results)
print('Current Set: ', 'train')
for index, subcorpus in enumerate(corpus.train_list):
# log_line(log)
# log.info('current corpus: '+self.corpus.targets[index])
if len(subcorpus)==0:
continue
print('Current Lang: ', corpus.targets[index])
loader=ColumnDataLoader(list(subcorpus),eval_mini_batch_size,use_bert=student.use_bert, model = student, sort_data = not args.keep_order, sentence_level_batch = config.config[trainer_name]['sentence_level_batch'] if 'sentence_level_batch' in config.config[trainer_name] else True)
loader.assign_tags(student.tag_type,student.tag_dictionary)
train_eval_result, train_loss = student.evaluate(
loader,
embeddings_storage_mode='none',
out_path=Path('system_pred/train.'+config.config['model_name']+'.conllu'),
)
print('Current accuracy: ' + str(train_eval_result.main_score*100))
print(train_eval_result.detailed_results)
# print('Current Set: ', 'train+dev')
# for index, subcorpus in enumerate(corpus.train_list):
# # log_line(log)
# # log.info('current corpus: '+self.corpus.targets[index])
# print('Current Lang: ', corpus.targets[index])
# loader=ColumnDataLoader(list(subcorpus)+list(corpus.dev_list[index]),eval_mini_batch_size,use_bert=student.use_bert, model = student, sort_data = not args.keep_order)
# loader.assign_tags(student.tag_type,student.tag_dictionary)
# train_eval_result, train_loss = student.evaluate(
# loader,
# embeddings_storage_mode='none',
# out_path=Path('outputs/train.'+config.config['model_name']+'.'+tar_file_name+'.conllu'),
# )
# print('Current accuracy: ' + str(train_eval_result.main_score*100))
# print(train_eval_result.detailed_results)
print('Current Set: ', 'test')
for index, subcorpus in enumerate(corpus.test_list):
# log_line(log)
# log.info('current corpus: '+self.corpus.targets[index])
if len(subcorpus)==0:
continue
print('Current Lang: ', corpus.targets[index])
loader=ColumnDataLoader(list(subcorpus),eval_mini_batch_size,use_bert=student.use_bert, model = student, sort_data = not args.keep_order, sentence_level_batch = config.config[trainer_name]['sentence_level_batch'] if 'sentence_level_batch' in config.config[trainer_name] else True)
loader.assign_tags(student.tag_type,student.tag_dictionary)
train_eval_result, train_loss = student.evaluate(
loader,
embeddings_storage_mode='none',
out_path=Path('system_pred/test.'+config.config['model_name']+'.conllu'),
)
print('Current accuracy: ' + str(train_eval_result.main_score*100))
print(train_eval_result.detailed_results)
elif args.target_dir != '':
if args.recur_parse:
file_dirs=os.listdir(args.target_dir)
for file_dir in file_dirs:
tar_dir=os.path.join(args.target_dir,file_dir)
if not os.path.isdir(tar_dir):
continue
if student.tag_type=='dependency':
corpus=datasets.UniversalDependenciesCorpus(tar_dir,add_root=True,spliter=args.spliter)
else:
corpus=datasets.ColumnCorpus(tar_dir, column_format={0: 'text', 1:'ner'}, tag_to_bioes='ner')
tar_file_name = tar_dir.split('/')[-1]
print('Parsing the file: '+tar_file_name)
write_name='outputs/train.'+config.config['model_name']+'.'+tar_file_name+'.conllu'
print('Writing to file: '+write_name)
loader=ColumnDataLoader(list(corpus.train),eval_mini_batch_size,use_bert=student.use_bert, model = student, sort_data = not args.keep_order, sentence_level_batch = config.config[trainer_name]['sentence_level_batch'] if 'sentence_level_batch' in config.config[trainer_name] else True)
loader.assign_tags(student.tag_type,student.tag_dictionary)
train_eval_result, train_loss = student.evaluate(loader,out_path=Path(write_name),embeddings_storage_mode="none",prediction_mode=True)
if train_eval_result is not None:
print('Current accuracy: ' + str(train_eval_result.main_score*100))
print(train_eval_result.detailed_results)
elif args.parse_test:
if args.num_columns == 4:
corpus=datasets.ColumnCorpus(args.target_dir, column_format={0: 'text', 1:'upos', 2:'xpos', 3:'ner'}, tag_to_bioes='ner', comment_symbol = args.comment_symbol)
else:
corpus=datasets.ColumnCorpus(args.target_dir, column_format={0: 'text', 1:'ner'}, tag_to_bioes='ner', comment_symbol = args.comment_symbol)
if 'assign_doc_for_ext_context' in config.config[trainer_name] and config.config[trainer_name]['assign_doc_for_ext_context']:
corpus_list={'train':[],'dev':[],'test':[]}
corpus_list['train'].append(corpus.train)
corpus_list['dev'].append(corpus.dev)
corpus_list['test'].append(corpus.test)
corpus: ListCorpus = ListCorpus(**corpus_list)
trainer.corpus=corpus
trainer.assign_ext_context_doc(trainer.corpus)
corpus = trainer.corpus
loader=ColumnDataLoader(list(corpus.test),eval_mini_batch_size,use_bert=student.use_bert, model = student, sort_data = not args.keep_order, sentence_level_batch = config.config[trainer_name]['sentence_level_batch'] if 'sentence_level_batch' in config.config[trainer_name] else True)
loader.assign_tags(student.tag_type,student.tag_dictionary)
train_eval_result, train_loss = student.evaluate(loader,out_path=Path('system_pred/test.'+config.config['model_name']+'.'+args.parse_name+'.conllu'),embeddings_storage_mode="none",prediction_mode=True)
if train_eval_result is not None:
print('Current accuracy: ' + str(train_eval_result.main_score*100))
print(train_eval_result.detailed_results)
else:
if student.tag_type=='dependency' or student.tag_type=='enhancedud':
corpus=datasets.UniversalDependenciesCorpus(args.target_dir,add_root=True,spliter=args.spliter)
else:
if args.num_columns == 4:
corpus=datasets.ColumnCorpus(args.target_dir, column_format={0: 'text', 1:'upos', 2:'xpos', 3:'ner'}, tag_to_bioes='ner', comment_symbol = args.comment_symbol)
else:
corpus=datasets.ColumnCorpus(args.target_dir, column_format={0: 'text', 1:'ner'}, tag_to_bioes='ner', comment_symbol = args.comment_symbol)
if 'assign_doc_for_ext_context' in config.config[trainer_name] and config.config[trainer_name]['assign_doc_for_ext_context']:
corpus_list={'train':[],'dev':[],'test':[]}
corpus_list['train'].append(corpus.train)
corpus_list['dev'].append(corpus.dev)
corpus_list['test'].append(corpus.test)
corpus: ListCorpus = ListCorpus(**corpus_list)
trainer.corpus=corpus
trainer.assign_ext_context_doc(trainer.corpus)
corpus = trainer.corpus
tar_file_name = str(Path(args.target_dir)).split('/')[-1]
loader=ColumnDataLoader(list(corpus.train),eval_mini_batch_size,use_bert=student.use_bert, model = student, sort_data = not args.keep_order, sentence_level_batch = config.config[trainer_name]['sentence_level_batch'] if 'sentence_level_batch' in config.config[trainer_name] else True)
loader.assign_tags(student.tag_type,student.tag_dictionary)
train_eval_result, train_loss = student.evaluate(loader,out_path=Path(args.output_dir+'/train.'+config.config['model_name']+'.'+args.parse_name+'.'+'.conllu'),embeddings_storage_mode="none",prediction_mode=True)
if train_eval_result is not None:
print('Current accuracy: ' + str(train_eval_result.main_score*100))
print(train_eval_result.detailed_results)
else:
loader=ColumnDataLoader(list(corpus.train),eval_mini_batch_size,use_bert=student.use_bert, model = student, sort_data = not args.keep_order, sentence_level_batch = config.config[trainer_name]['sentence_level_batch'] if 'sentence_level_batch' in config.config[trainer_name] else True)
loader.assign_tags(student.tag_type,student.tag_dictionary)
train_eval_result, train_loss = student.evaluate(loader,out_path=Path('outputs/train.'+config.config['model_name']+'.'+corpus.targets[0]+'.conllu'),embeddings_storage_mode="none",prediction_mode=True)
if train_eval_result is not None:
print('Current accuracy: ' + str(train_eval_result.main_score*100))
print(train_eval_result.detailed_results)
else:
getattr(trainer,'train')(**train_config)
# trainer.train(
# config.get_target_path,
# learning_rate=0.1,
# mini_batch_size=32,
# max_epochs=150
# )