forked from IST-DASLab/sparsegpt
-
Notifications
You must be signed in to change notification settings - Fork 4
/
sparsegpt.py
151 lines (120 loc) · 4.72 KB
/
sparsegpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import math
import time
import torch
import torch.nn as nn
import transformers
from quant import *
DEBUG = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
class SparseGPT:
def __init__(self, layer):
self.layer = layer
self.dev = self.layer.weight.device
W = layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1D):
W = W.t()
self.rows = W.shape[0]
self.columns = W.shape[1]
self.H = torch.zeros((self.columns, self.columns), device=self.dev)
self.nsamples = 0
def add_batch(self, inp, out, blocksize=1024):
if DEBUG:
self.inp1 = inp
self.out1 = out
if len(inp.shape) == 2:
inp = inp.unsqueeze(0)
tmp = inp.shape[0]
if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.Conv1D):
if len(inp.shape) == 3:
inp = inp.reshape((-1, inp.shape[-1]))
inp = inp.t()
self.H *= self.nsamples / (self.nsamples + tmp)
self.nsamples += tmp
inp = math.sqrt(2 / self.nsamples) * inp.float()
self.H += inp.matmul(inp.t())
def fasterprune(
self, sparsity, prunen=0, prunem=0, blocksize=128, percdamp=.01
):
W = self.layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1D):
W = W.t()
W = W.float()
if hasattr(self, 'quantizer'):
if not self.quantizer.ready():
self.quantizer.find_params(W, weight=True)
tick = time.time()
H = self.H
del self.H
dead = torch.diag(H) == 0
H[dead, dead] = 1
W[:, dead] = 0
Losses = torch.zeros(self.rows, device=self.dev)
damp = percdamp * torch.mean(torch.diag(H))
diag = torch.arange(self.columns, device=self.dev)
H[diag, diag] += damp
H = torch.linalg.cholesky(H)
H = torch.cholesky_inverse(H)
H = torch.linalg.cholesky(H, upper=True)
Hinv = H
mask = None
for i1 in range(0, self.columns, blocksize):
i2 = min(i1 + blocksize, self.columns)
count = i2 - i1
W1 = W[:, i1:i2].clone()
Q1 = torch.zeros_like(W1)
Err1 = torch.zeros_like(W1)
Losses1 = torch.zeros_like(W1)
Hinv1 = Hinv[i1:i2, i1:i2]
if prunen == 0:
if mask is not None:
mask1 = mask[:, i1:i2]
else:
tmp = W1 ** 2 / (torch.diag(Hinv1).reshape((1, -1))) ** 2
thresh = torch.sort(tmp.flatten())[0][int(tmp.numel() * sparsity)]
mask1 = tmp <= thresh
else:
mask1 = torch.zeros_like(W1) == 1
for i in range(count):
w = W1[:, i]
d = Hinv1[i, i]
if prunen != 0 and i % prunem == 0:
tmp = W1[:, i:(i + prunem)] ** 2 / (torch.diag(Hinv1)[i:(i + prunem)].reshape((1, -1))) ** 2
mask1.scatter_(1, i + torch.topk(tmp, prunen, dim=1, largest=False)[1], True)
q = w.clone()
q[mask1[:, i]] = 0
if hasattr(self, 'quantizer'):
q = quantize(
q.unsqueeze(1), self.quantizer.scale, self.quantizer.zero, self.quantizer.maxq
).flatten()
Q1[:, i] = q
Losses1[:, i] = (w - q) ** 2 / d ** 2
err1 = (w - q) / d
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
Err1[:, i] = err1
W[:, i1:i2] = Q1
Losses += torch.sum(Losses1, 1) / 2
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
if DEBUG:
self.layer.weight.data[:, :i2] = W[:, :i2]
self.layer.weight.data[:, i2:] = W[:, i2:]
print(torch.sum((self.layer(self.inp1) - self.out1) ** 2))
print(torch.sum(Losses))
torch.cuda.synchronize()
print('time %.2f' % (time.time() - tick))
print('error', torch.sum(Losses).item())
if isinstance(self.layer, transformers.Conv1D):
W = W.t()
self.layer.weight.data = W.reshape(self.layer.weight.shape).to(self.layer.weight.data.dtype)
if DEBUG:
print(torch.sum((self.layer(self.inp1) - self.out1) ** 2))
def free(self):
if DEBUG:
self.inp1 = None
self.out1 = None
self.H = None
torch.cuda.empty_cache()