-
Notifications
You must be signed in to change notification settings - Fork 0
/
nnCostFunction.m
102 lines (82 loc) · 3.93 KB
/
nnCostFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
%
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
Theta1=Theta1';
Theta2=Theta2';
% Setup some useful variables
m = size(X, 1);
c=size(Theta2,2);
% You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
% following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
%
hyp = @(x,y,z) (sigmoid([ones(size(x,1),1) sigmoid([ones(size(x,1),1) x]*y)]*z));
layer2 = @(x,y) ( sigmoid([ones(size(x,1),1) x]*y));
yn= (1:c) == y;
temp=hyp(X,Theta1,Theta2);
temphid=layer2(X,Theta1);
J=(-1/m)*(sum(sum(yn.*log(temp)+(1-yn).*log(1-temp))));
% --------code gradients here---------------------------------------
delta3=temp-yn;
delta2=delta3*((Theta2([2:end],:))').*temphid.*(1-temphid);
Theta2_grad = [([ones(size(temphid,1),1) temphid]'*delta3)']./m;
Theta1_grad = [([ones(size(X,1),1) X]'*delta2)']./m;
% =========================================================================
% Unroll gradients
if lambda~=0
reg=sum(sum(Theta1([2:size(Theta1,1)],:).^2))+sum(sum(Theta2([2:size(Theta2,1)],:).^2));
J=J+(lambda/(2*m))*reg;
Theta1_grad=Theta1_grad+(lambda/m).*([zeros(1,size(Theta1,2)); Theta1([2:end],:)])';
Theta2_grad=Theta2_grad+(lambda/m).*([zeros(1,size(Theta2,2)); Theta2([2:end],:)])';
end
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end