-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval-lane.py
151 lines (121 loc) · 4.99 KB
/
eval-lane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from sklearn.metrics import accuracy_score, f1_score, jaccard_score
from tqdm import tqdm
import os
from PIL import Image
# Set the environment variable for CUDA
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(UNet, self).__init__()
def CBR(in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
self.enc1 = CBR(in_channels, 64)
self.enc2 = CBR(64, 128)
self.enc3 = CBR(128, 256)
self.enc4 = CBR(256, 512)
self.pool = nn.MaxPool2d(2)
self.bottleneck = CBR(512, 1024)
self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
self.dec4 = CBR(1024, 512)
self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.dec3 = CBR(512, 256)
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.dec2 = CBR(256, 128)
self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.dec1 = CBR(128, 64)
self.conv = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
enc1 = self.enc1(x)
enc2 = self.enc2(self.pool(enc1))
enc3 = self.enc3(self.pool(enc2))
enc4 = self.enc4(self.pool(enc3))
bottleneck = self.bottleneck(self.pool(enc4))
dec4 = self.upconv4(bottleneck)
dec4 = torch.cat((dec4, enc4), dim=1)
dec4 = self.dec4(dec4)
dec3 = self.upconv3(dec4)
dec3 = torch.cat((dec3, enc3), dim=1)
dec3 = self.dec3(dec3)
dec2 = self.upconv2(dec3)
dec2 = torch.cat((dec2, enc2), dim=1)
dec2 = self.dec2(dec2)
dec1 = self.upconv1(dec2)
dec1 = torch.cat((dec1, enc1), dim=1)
dec1 = self.dec1(dec1)
return torch.sigmoid(self.conv(dec1))
# Define transformations for the images
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((720, 1280)) # Resize to match the input size of the model
])
# Custom dataset class
class BDD100KDataset(torch.utils.data.Dataset):
def __init__(self, image_dir, mask_dir, transform=None):
self.image_dir = image_dir
self.mask_dir = mask_dir
self.transform = transform
self.image_list = os.listdir(image_dir)
def __len__(self):
return len(self.image_list)
def __getitem__(self, idx):
image_path = os.path.join(self.image_dir, self.image_list[idx])
mask_path = os.path.join(self.mask_dir, self.image_list[idx].replace('.jpg', '.png'))
image = Image.open(image_path).convert("RGB")
mask = Image.open(mask_path).convert('L')
if self.transform:
image = self.transform(image)
mask = self.transform(mask)
return image, mask
# Load the trained model
model = UNet(in_channels=3, out_channels=1).cuda()
model.load_state_dict(torch.load('best_unet_lane_detection.pth')['model_state_dict'])
model.eval()
# Define loss function
criterion = nn.BCEWithLogitsLoss()
# Load validation data
val_image_dir = '/data/BDD100K/bdd100k/bdd_data/images/100k/val'
val_mask_dir = '/data/BDD100K/bdd100k/bdd_data/bdd100k/labels/lane/masks/val'
val_dataset = BDD100KDataset(val_image_dir, val_mask_dir, transform)
val_loader = DataLoader(val_dataset, batch_size=16, shuffle=False)
# Evaluation function
def evaluate(model, val_loader, criterion):
model.eval()
val_loss = 0.0
val_accuracy = 0.0
val_f1 = 0.0
val_jaccard = 0.0
num_batches = len(val_loader)
with torch.no_grad():
for images, masks in tqdm(val_loader, desc='Evaluating'):
images = images.cuda()
masks = masks.cuda()
outputs = model(images)
loss = criterion(outputs, masks)
val_loss += loss.item()
preds = torch.sigmoid(outputs).cpu().numpy() > 0.5
true = masks.cpu().numpy() > 0.5
val_accuracy += accuracy_score(true.flatten(), preds.flatten())
val_f1 += f1_score(true.flatten(), preds.flatten())
val_jaccard += jaccard_score(true.flatten(), preds.flatten())
val_loss /= num_batches
val_accuracy /= num_batches
val_f1 /= num_batches
val_jaccard /= num_batches
print(f'Validation Loss: {val_loss:.4f}')
print(f'Validation Accuracy: {val_accuracy:.4f}')
print(f'Validation F1 Score: {val_f1:.4f}')
print(f'Validation Jaccard Score: {val_jaccard:.4f}')
# Run evaluation
evaluate(model, val_loader, criterion)