-
Notifications
You must be signed in to change notification settings - Fork 1
/
simulator.py
194 lines (152 loc) · 6.38 KB
/
simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import cv2
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from model import UNet # Assuming the UNet class is in a file named model.py
import pyautogui
import time
from mss import mss
from datetime import datetime
# Debugging variables
steering_history = []
key_press_count = {"left": 0, "right": 0}
def capture_screen():
sct = mss()
monitor = {"top": 345, "left": 500, "width": 440, "height": 210}
screenshot = np.array(sct.grab(monitor))
return cv2.cvtColor(screenshot, cv2.COLOR_RGBA2RGB)
def process_frame(frame, model, transform):
pil_image = Image.fromarray(frame)
input_tensor = transform(pil_image).unsqueeze(0)
with torch.no_grad():
output = model(input_tensor)
mask = output.squeeze().cpu().numpy()
mask = cv2.resize(mask, (frame.shape[1], frame.shape[0]))
mask = (mask - mask.min()) / (mask.max() - mask.min())
inverted_mask = 1 - mask
green_overlay = np.zeros_like(frame)
green_overlay[:, :, 1] = 255
green_mask = (inverted_mask[:, :, np.newaxis] * green_overlay).astype(np.uint8)
alpha = 0.3
result = cv2.addWeighted(frame, 1, green_mask, alpha, 0)
return result, inverted_mask
def calculate_steering(mask, image_center):
height, width = mask.shape
lower_half = mask[height//2:, :]
lane_pixels = np.where(lower_half > 0.5)
if len(lane_pixels[1]) == 0:
return 0
lane_center = np.mean(lane_pixels[1])
steering = lane_center - image_center
return steering
class PIDController:
def __init__(self, Kp, Ki, Kd):
self.Kp = Kp
self.Ki = Ki
self.Kd = Kd
self.prev_error = 0
self.integral = 0
def update(self, error, dt):
self.integral += error * dt
derivative = (error - self.prev_error) / dt
output = self.Kp * error + self.Ki * self.integral + self.Kd * derivative
self.prev_error = error
return output
def steer_vehicle(steering, pid_controller, prev_steering, dt):
global key_press_count
steering_threshold = 10
center_threshold = 5
# Update the steering value using PID controller
steering = pid_controller.update(steering, dt)
# Combine previous steering with the new steering for smoothing
steering = 0.7 * steering + 0.3 * prev_steering
if abs(steering) < center_threshold:
return steering, "CENTER"
# Determine key press duration based on the steering value
key_hold_duration = min(0.1, max(0.01, abs(steering) / 100))
if steering < -steering_threshold:
pyautogui.keyDown('left')
time.sleep(key_hold_duration)
pyautogui.keyUp('left')
key_press_count["left"] += 1
return steering, "LEFT"
elif steering > steering_threshold:
pyautogui.keyDown('right')
time.sleep(key_hold_duration)
pyautogui.keyUp('right')
key_press_count["right"] += 1
return steering, "RIGHT"
else:
return steering, "CENTER"
def draw_debug_info(image, steering, mask, direction):
global steering_history
steering_history.append(steering)
if len(steering_history) > 50:
steering_history.pop(0)
debug_image = image.copy()
mask_overlay = np.zeros_like(debug_image)
mask_overlay[:, :, 1] = (mask * 255).astype(np.uint8)
debug_image = cv2.addWeighted(debug_image, 1, mask_overlay, 0.5, 0)
cv2.putText(debug_image, f"Steering: {steering:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(debug_image, f"Direction: {direction}", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
graph_width = 200
graph_height = 100
graph = np.zeros((graph_height, graph_width, 3), dtype=np.uint8)
for i, steer in enumerate(steering_history):
y = int(graph_height / 2 - steer)
cv2.circle(graph, (i * 4, y), 1, (0, 255, 0), -1)
debug_image[50:50+graph_height, 10:10+graph_width] = cv2.addWeighted(
debug_image[50:50+graph_height, 10:10+graph_width],
0.5,
graph,
0.5,
0
)
cv2.putText(debug_image, f"Left: {key_press_count['left']}", (10, debug_image.shape[0] - 60), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
cv2.putText(debug_image, f"Right: {key_press_count['right']}", (10, debug_image.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
return debug_image
def main():
model = UNet(in_channels=3, out_channels=1)
model.load_state_dict(torch.load('new-unet/unet_lane_detection_epoch_5.pth', map_location=torch.device('cpu'))['model_state_dict'])
model.eval()
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
pid_controller = PIDController(Kp=0.1, Ki=0.01, Kd=0.05)
prev_steering = 0
# Set up video writer
fourcc = cv2.VideoWriter_fourcc(*'XVID')
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_filename = f'lane_detection_run_{timestamp}.avi'
out = None # We'll initialize this later
print("Starting in 3 seconds. Switch to the game window!")
time.sleep(3)
try:
while True:
start_time = time.time()
screen = capture_screen()
result_frame, inverted_mask = process_frame(screen, model, transform)
image_center = screen.shape[1] / 2
steering = calculate_steering(inverted_mask, image_center)
dt = time.time() - start_time
steering, direction = steer_vehicle(steering, pid_controller, prev_steering, dt)
prev_steering = steering
debug_image = draw_debug_info(result_frame, steering, inverted_mask, direction)
# Initialize video writer with the correct frame size
if out is None:
frame_height, frame_width = debug_image.shape[:2]
out = cv2.VideoWriter(output_filename, fourcc, 20.0, (frame_width, frame_height))
# Write frame to video
out.write(debug_image)
cv2.imshow('Lane Detection Debug', debug_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
finally:
if out is not None:
out.release()
cv2.destroyAllWindows()
print(f"Video saved as {output_filename}")
if __name__ == '__main__':
main()