-
Notifications
You must be signed in to change notification settings - Fork 118
/
utils.py
414 lines (292 loc) · 10.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
import datetime
import json
import logging
import librosa
import pickle
from typing import Dict
import numpy as np
import torch
import torch.nn as nn
import yaml
from models.audiosep import AudioSep, get_model_class
def ignore_warnings():
import warnings
# Ignore UserWarning from torch.meshgrid
warnings.filterwarnings('ignore', category=UserWarning, module='torch.functional')
# Refined regex pattern to capture variations in the warning message
pattern = r"Some weights of the model checkpoint at roberta-base were not used when initializing RobertaModel: \['lm_head\..*'\].*"
warnings.filterwarnings('ignore', message=pattern)
def create_logging(log_dir, filemode):
os.makedirs(log_dir, exist_ok=True)
i1 = 0
while os.path.isfile(os.path.join(log_dir, "{:04d}.log".format(i1))):
i1 += 1
log_path = os.path.join(log_dir, "{:04d}.log".format(i1))
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s",
datefmt="%a, %d %b %Y %H:%M:%S",
filename=log_path,
filemode=filemode,
)
# Print to console
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter("%(name)-12s: %(levelname)-8s %(message)s")
console.setFormatter(formatter)
logging.getLogger("").addHandler(console)
return logging
def float32_to_int16(x: float) -> int:
x = np.clip(x, a_min=-1, a_max=1)
return (x * 32767.0).astype(np.int16)
def int16_to_float32(x: int) -> float:
return (x / 32767.0).astype(np.float32)
def parse_yaml(config_yaml: str) -> Dict:
r"""Parse yaml file.
Args:
config_yaml (str): config yaml path
Returns:
yaml_dict (Dict): parsed yaml file
"""
with open(config_yaml, "r") as fr:
return yaml.load(fr, Loader=yaml.FullLoader)
def get_audioset632_id_to_lb(ontology_path: str) -> Dict:
r"""Get AudioSet 632 classes ID to label mapping."""
audioset632_id_to_lb = {}
with open(ontology_path) as f:
data_list = json.load(f)
for e in data_list:
audioset632_id_to_lb[e["id"]] = e["name"]
return audioset632_id_to_lb
def load_pretrained_panns(
model_type: str,
checkpoint_path: str,
freeze: bool
) -> nn.Module:
r"""Load pretrained pretrained audio neural networks (PANNs).
Args:
model_type: str, e.g., "Cnn14"
checkpoint_path, str, e.g., "Cnn14_mAP=0.431.pth"
freeze: bool
Returns:
model: nn.Module
"""
if model_type == "Cnn14":
Model = Cnn14
elif model_type == "Cnn14_DecisionLevelMax":
Model = Cnn14_DecisionLevelMax
else:
raise NotImplementedError
model = Model(sample_rate=32000, window_size=1024, hop_size=320,
mel_bins=64, fmin=50, fmax=14000, classes_num=527)
if checkpoint_path:
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint["model"])
if freeze:
for param in model.parameters():
param.requires_grad = False
return model
def energy(x):
return torch.mean(x ** 2)
def magnitude_to_db(x):
eps = 1e-10
return 20. * np.log10(max(x, eps))
def db_to_magnitude(x):
return 10. ** (x / 20)
def ids_to_hots(ids, classes_num, device):
hots = torch.zeros(classes_num).to(device)
for id in ids:
hots[id] = 1
return hots
def calculate_sdr(
ref: np.ndarray,
est: np.ndarray,
eps=1e-10
) -> float:
r"""Calculate SDR between reference and estimation.
Args:
ref (np.ndarray), reference signal
est (np.ndarray), estimated signal
"""
reference = ref
noise = est - reference
numerator = np.clip(a=np.mean(reference ** 2), a_min=eps, a_max=None)
denominator = np.clip(a=np.mean(noise ** 2), a_min=eps, a_max=None)
sdr = 10. * np.log10(numerator / denominator)
return sdr
def calculate_sisdr(ref, est):
r"""Calculate SDR between reference and estimation.
Args:
ref (np.ndarray), reference signal
est (np.ndarray), estimated signal
"""
eps = np.finfo(ref.dtype).eps
reference = ref.copy()
estimate = est.copy()
reference = reference.reshape(reference.size, 1)
estimate = estimate.reshape(estimate.size, 1)
Rss = np.dot(reference.T, reference)
# get the scaling factor for clean sources
a = (eps + np.dot(reference.T, estimate)) / (Rss + eps)
e_true = a * reference
e_res = estimate - e_true
Sss = (e_true**2).sum()
Snn = (e_res**2).sum()
sisdr = 10 * np.log10((eps+ Sss)/(eps + Snn))
return sisdr
class StatisticsContainer(object):
def __init__(self, statistics_path):
self.statistics_path = statistics_path
self.backup_statistics_path = "{}_{}.pkl".format(
os.path.splitext(self.statistics_path)[0],
datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"),
)
self.statistics_dict = {"balanced_train": [], "test": []}
def append(self, steps, statistics, split, flush=True):
statistics["steps"] = steps
self.statistics_dict[split].append(statistics)
if flush:
self.flush()
def flush(self):
pickle.dump(self.statistics_dict, open(self.statistics_path, "wb"))
pickle.dump(self.statistics_dict, open(self.backup_statistics_path, "wb"))
logging.info(" Dump statistics to {}".format(self.statistics_path))
logging.info(" Dump statistics to {}".format(self.backup_statistics_path))
def get_mean_sdr_from_dict(sdris_dict):
mean_sdr = np.nanmean(list(sdris_dict.values()))
return mean_sdr
def remove_silence(audio: np.ndarray, sample_rate: int) -> np.ndarray:
r"""Remove silent frames."""
window_size = int(sample_rate * 0.1)
threshold = 0.02
frames = librosa.util.frame(x=audio, frame_length=window_size, hop_length=window_size).T
# shape: (frames_num, window_size)
new_frames = get_active_frames(frames, threshold)
# shape: (new_frames_num, window_size)
new_audio = new_frames.flatten()
# shape: (new_audio_samples,)
return new_audio
def get_active_frames(frames: np.ndarray, threshold: float) -> np.ndarray:
r"""Get active frames."""
energy = np.max(np.abs(frames), axis=-1)
# shape: (frames_num,)
active_indexes = np.where(energy > threshold)[0]
# shape: (new_frames_num,)
new_frames = frames[active_indexes]
# shape: (new_frames_num,)
return new_frames
def repeat_to_length(audio: np.ndarray, segment_samples: int) -> np.ndarray:
r"""Repeat audio to length."""
repeats_num = (segment_samples // audio.shape[-1]) + 1
audio = np.tile(audio, repeats_num)[0 : segment_samples]
return audio
def calculate_segmentwise_sdr(ref, est, hop_samples, return_sdr_list=False):
min_len = min(ref.shape[-1], est.shape[-1])
pointer = 0
sdrs = []
while pointer + hop_samples < min_len:
sdr = calculate_sdr(
ref=ref[:, pointer : pointer + hop_samples],
est=est[:, pointer : pointer + hop_samples],
)
sdrs.append(sdr)
pointer += hop_samples
sdr = np.nanmedian(sdrs)
if return_sdr_list:
return sdr, sdrs
else:
return sdr
def loudness(data, input_loudness, target_loudness):
""" Loudness normalize a signal.
Normalize an input signal to a user loudness in dB LKFS.
Params
-------
data : torch.Tensor
Input multichannel audio data.
input_loudness : float
Loudness of the input in dB LUFS.
target_loudness : float
Target loudness of the output in dB LUFS.
Returns
-------
output : torch.Tensor
Loudness normalized output data.
"""
# calculate the gain needed to scale to the desired loudness level
delta_loudness = target_loudness - input_loudness
gain = torch.pow(10.0, delta_loudness / 20.0)
output = gain * data
# check for potentially clipped samples
# if torch.max(torch.abs(output)) >= 1.0:
# warnings.warn("Possible clipped samples in output.")
return output
def get_ss_model(config_yaml) -> nn.Module:
r"""Load trained universal source separation model.
Args:
configs (Dict)
checkpoint_path (str): path of the checkpoint to load
device (str): e.g., "cpu" | "cuda"
Returns:
pl_model: pl.LightningModule
"""
configs = parse_yaml(config_yaml)
ss_model_type = configs["model"]["model_type"]
input_channels = configs["model"]["input_channels"]
output_channels = configs["model"]["output_channels"]
condition_size = configs["model"]["condition_size"]
# Initialize separation model
SsModel = get_model_class(model_type=ss_model_type)
ss_model = SsModel(
input_channels=input_channels,
output_channels=output_channels,
condition_size=condition_size,
)
return ss_model
def load_ss_model(
configs: Dict,
checkpoint_path: str,
query_encoder: nn.Module
) -> nn.Module:
r"""Load trained universal source separation model.
Args:
configs (Dict)
checkpoint_path (str): path of the checkpoint to load
device (str): e.g., "cpu" | "cuda"
Returns:
pl_model: pl.LightningModule
"""
ss_model_type = configs["model"]["model_type"]
input_channels = configs["model"]["input_channels"]
output_channels = configs["model"]["output_channels"]
condition_size = configs["model"]["condition_size"]
# Initialize separation model
SsModel = get_model_class(model_type=ss_model_type)
ss_model = SsModel(
input_channels=input_channels,
output_channels=output_channels,
condition_size=condition_size,
)
# Load PyTorch Lightning model
pl_model = AudioSep.load_from_checkpoint(
checkpoint_path=checkpoint_path,
strict=False,
ss_model=ss_model,
waveform_mixer=None,
query_encoder=query_encoder,
loss_function=None,
optimizer_type=None,
learning_rate=None,
lr_lambda_func=None,
map_location=torch.device('cpu'),
)
return pl_model
def parse_yaml(config_yaml: str) -> Dict:
r"""Parse yaml file.
Args:
config_yaml (str): config yaml path
Returns:
yaml_dict (Dict): parsed yaml file
"""
with open(config_yaml, "r") as fr:
return yaml.load(fr, Loader=yaml.FullLoader)