-
Notifications
You must be signed in to change notification settings - Fork 0
/
poster.tex
267 lines (187 loc) · 13 KB
/
poster.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
% Gemini theme
% https://github.com/anishathalye/gemini
%
% We try to keep this Overleaf template in sync with the canonical source on
% GitHub, but it's recommended that you obtain the template directly from
% GitHub to ensure that you are using the latest version.
\documentclass[final]{beamer}
% ====================
% Packages
% ====================
\usepackage{amsmath, amsthm, amssymb, amsfonts}
\usepackage[size=custom,width=120,height=72,scale=1.0]{beamerposter}
\usetheme{gemini}
\usecolortheme{gemini}
\usepackage{bigints}
\usepackage{booktabs}
\usepackage{epigraph}
\usepackage{float}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\graphicspath{ {./img/} }
\usepackage{hhline}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=cyan,
urlcolor=magenta,
pdftitle={Loop Classical Mechanics},
}
\usepackage{lmodern}
\usepackage{mathrsfs}
\usepackage{mathtools}
\usepackage{pgfplots}
\pgfplotsset{compat=1.14}
\usepackage{soul}
\usepackage{tcolorbox}
\usepackage{tikz}
\usepackage{tikz-cd}
\usepackage[normalem]{ulem}
\newenvironment{highlight}
{\begin{tcolorbox}[colback=lightblue, boxrule=0pt, frame empty]}
{\end{tcolorbox}}
% ====================
% Lengths
% ====================
% If you have N columns, choose \sepwidth and \colwidth such that
% (N+1)*\sepwidth + N*\colwidth = \paperwidth
\newlength{\sepwidth}
\newlength{\colwidth}
\setlength{\sepwidth}{0.025\paperwidth}
\setlength{\colwidth}{0.3\paperwidth}
\setlength\epigraphwidth{\colwidth}
\newcommand{\separatorcolumn}{\begin{column}{\sepwidth}\end{column}}
\newcommand{\bs}{\backslash}
\newcommand{\ca}{\cancel}
\newcommand{\dis}{\displaystyle}
\newcommand{\ex}{\exists \:}
\newcommand{\fa}{\forall \:}
\newcommand{\im}{\text{im}}
\newcommand{\mb}{\mathbb}
\newcommand{\mc}{\mathcal}
\newcommand{\mf}{\mathfrak}
\newcommand{\preim}{\text{preim}}
\newcommand{\ra}{\rightarrow}
\newcommand{\sing}{\text{Sing}}
\newcommand{\inc}[1]{\xhookrightarrow{#1}}
\newcommand{\mor}[1]{\xrightarrow{#1}}
\newcommand{\lmor}[1]{\xrightarrow[#1]}
\theoremstyle{remark}
\newtheorem*{remark}{Remark}
% ====================
% Title
% ====================
\title{Loop \sout{Quantum Gravity} Classical Mechanics: Algebraic Topology for Non-holonomic Mechanics}
\author{Siddhartha Bhattacharjee}
\institute[shortinst]{University of Waterloo}
% ====================
% Footer (optional)
% ====================
\footercontent{
Blog (Tempus Spatium): \href{https://booodaness.github.io/tempus-spatium/}{https://booodaness.github.io/tempus-spatium/} \hfill
\href{https://uwaterloo.ca/physics-astronomy/events/phys-10-seminars}{PHYS10} Poster Fair, March 22, 2024 \hfill
\href{mailto:s3bhatta@uwaterloo.ca}{s3bhatta@uwaterloo.ca}}
% (can be left out to remove footer)
% ====================
% Logo (optional)
% ====================
% use this to include logos on the left and/or right side of the header:
% \logoright{\includegraphics[height=7cm]{logo1.pdf}}
% \logoleft{\includegraphics[height=7cm]{logo2.pdf}}
% ====================
% Body
% ====================
\begin{document}
\begin{frame}[t]
\begin{columns}[t]
\separatorcolumn
\begin{column}{\colwidth}
\epigraph{\textit{There is no clear-cut distinction between example and theory.}}{Michael Atiyah}
\begin{block}{$n$-Simpices (\emph{Triangles!})}
The \textbf{standard $n$-simplex} $\Delta^n \subsetneq \mathbb{R}^{n+1}$ is the \emph{convex hull} of the standard basis vectors $\{ e_0, \dots, e_n \}$,
$$\Delta^n = \left\{ \sum_i t_i e_i : \sum_i t_i = 1; t_0, \dots, t_n \geq 0 \right\}$$
$(t_0, \dots, t_n)$ are the \textbf{barycentric coordinates} of $\Delta^n$. Associated with a standard $n$ simplex are its \textbf{face (inclusion) maps} (opposite to the $e_i$) which are \emph{affine linear maps} $\phi^n_i : \Delta^{n-1} \inc{} \Delta^n$ with,
$$\phi^n_i = (e_0, \dots, \widehat{e}_i, \dots, e_n)^\flat : (t_0, \dots, t_{n-1}) \mapsto (t_0, \dots, t_{i-1}, 0, t_i, \dots, t_{n-1})$$
where the widehat denotes the omission of the $i$-th index. The $i$-th \textbf{face} of $\Delta^n$ is the \emph{subsimplex} $\phi^n_i(\Delta^{n-1})$. The boundary of a non-oriented $n$-simplex then consists (up to permutation) the union of all its faces.
Standard $n$-simplices are a well-understood and surprisingly rich class of topological spaces. It is therefore convenient to understand an arbitrary topological space $X$ and its topological invariants via continuous maps from $n$-simplices.
\end{block}
\begin{block}{Singular $n$-simplices (\emph{Curved triangles!})}
A \textbf{singular $n$-simplex in $X$} is a $C^1$ map $\sigma_n : \Delta^n \to X$. The set of all (singular) $n$-simplices in $X$ is denoted as $\sing_n(X)$. Analogous to $n$-simplices, singular $n$-simplices are associated with \textbf{face maps} $d^n_i : \sing_n(X) \to \sing_{n-1}(X), \sigma_n \mapsto \sigma_n^{(i)} = \sigma_n \circ \phi^n_i$ with the $i$-th \textbf{face} of $\sigma_n$ being $d^n_i(\sigma_n) = \sigma_n^{(i)}$.
The above information can be captured as an example commutative diagram,
\begin{figure}[H]
\begin{center}
\includegraphics[width=0.75\colwidth]{singular_simplex}
\end{center}
\caption{The standard $1$-simplex $\Delta^1$; face maps $\phi^2_i$ to the standard $2$-simplex $\Delta^2$; and a singular $2$-simplex $\sigma_2$ in $X$.}
\end{figure}
To talk about the boundary of $n$-simplices in $X$, we will need to construct a \emph{free Abelian group} structure on simplices.
\end{block}
\begin{block}{Singular $n$-chains (\emph{Triangles form modules, yay!})}
The \textbf{singular $n$-chains} of $X$ are members of the \emph{free Abelian group} generated by singular $n$-simplices,
$$S_n(X) = \mathbb{Z} \: \sing_n(X)$$
Therefore, an $n$-chain is a \emph{finite $\mathbb{Z}$-linear combination of simplices}, $\displaystyle{\sum_{i \in I \subsetneq \mathbb{N}} a_i \sigma_i}$ s.t. for all $i \in I$, we have, $a_i \in \mathbb{Z}, \sigma_i \in \sing_n(X)$. This construction is instrumental as $S_n(X)$ behaves as a $\mathbb{Z}$-module. It is \emph{free} in the sense that $\sing_n(X)$ is a $\mathbb{Z}$-basis for it. The \textbf{rank} of $S_n(X)$ is defined to be $\dim(\sing_n(X))$.
\end{block}
\end{column}
\separatorcolumn
\begin{column}{\colwidth}
Now, the \textbf{boundary operator} $\partial_n : \sing_n(X) \to S_{n-1}(X)$ is defined as,
\begin{highlight}
$$\partial_n(\sigma_n) = \sum_{i=0}^n (-1)^n d^n_i(\sigma_n) = \sum_{i=0}^n (-1)^i \sigma_n^{(i)}$$
\end{highlight}
This canonically generates a \emph{homomorphism} between chains, $\partial_n : S_n(X) \to S_{n-1}(X)$ with
$$\partial_n \left( \sum_{k=0}^r a_k \sigma_k \right) = \sum_{k=0}^r a_k \partial_n(\sigma_k)$$
\begin{alertblock}{$n$-cycles and $n$-boundaries (\emph{Loops and surfaces go brrr!})}
An \textbf{$n$-cycle} in $X$ is an $n$-chain $c \in S_n(X)$ with a \emph{vanishing boundary} i.e., $\partial_n c = 0$. The \textbf{group of $n$-cycles} in $X$ is the subset (of $S_n(X)$),
$$Z_n(X) = \ker(\partial_n : S_n(X) \to S_{n-1}(X))$$
Similarly, an \textbf{$n$-dimensional boundary} in $X$ is an $n$-chain $c \in S_n(X)$ s.t. there exists an $(n+1)$-chain $b \in S_{n+1}(X)$ satisfying $\partial_{n+1} b = c$. The \textbf{group of $n$-boundaries} of $X$ is consequently,
$$B_n(X) = \im(\partial_{n+1} : S_{n+1}(X) \to S_n(X))$$
\end{alertblock}
A celebrated theorem is that boundaries have no boundaries, $\partial_{n} \circ \partial_{n+1} = 0$, which follows from the antisymmetric nature of $\partial$. In other words, boundaries are always cycles, $B_n(X) \subseteq Z_n(X)$. This motivates us to define a \textbf{chain complex}, which is a sequence of graded ($\mathbb{Z}$-indexed) Abelian groups $\{ A_n \}$ together with homomorphisms $\partial_n : A_n \to A_{n-1}$ satisfying $\partial_n \circ \partial_{n+1} = 0$.
The chain complex associated with a topological space $X$ is its \textbf{singular chain complex},
\begin{highlight}
$$... \mor{\partial_{n+1}} S_n(X) \mor{\partial_n} S_{n-1}(X) \mor{\partial_{n-1}} ... \mor{\partial_1} S_0(X) \mor{\partial_0} 0$$
\end{highlight}
\begin{block}{Singular homology (\emph{Cycles with no interior measure holes!!!})}
The $n$-th \textbf{singular homology} group of $X$ is the \emph{quotient group},
\begin{highlight}
$$H_n(X) = \frac{Z_n(X)}{B_n(X)} = \{ [c] : c \in Z_n(X) \} = \{ c + B_n(X) : c \in Z_n(X) \}$$
\end{highlight}
Formally, $H_n(X)$ identifies cycles differing by boundaries i.e. \textbf{homologous} cycles. Therefore, each homology class is represented by a distinct cycle that contains no boundaries --- which are $n$-dimensional holes! Intuitively, homology 'forgets' boundaries to detect topological invariants like holes of a given dimension. For example, let $\sigma_n(\Delta^n) = \partial_{n-1} \sigma_{n-1}(\Delta^{n-1})$. Informally, since $\sigma_n(\Delta^n)$ is a convex region, it can be continuously \emph{contracted} to a point, which is 'uninteresting' from the point of view of detecting holes. This is why modding out by $B_n(X)$ allows us to 'see' cycles that cannot be contracted to inner regions, thereby counting holes.
\begin{figure}[H]
\begin{center}
\includegraphics[width=0.3\colwidth]{homology_class}
\end{center}
\caption{A $3$-hole $H_{3, 1}(X)$, represented by the (dotted) non-boundary cycle $(e_0, e_1, e_2, e_3)$. The (undotted) boundary $b=(e_4, e_3, e_2)$ does not affect the hole, so that $H_{3, 1}(X)$ is homologous to the cycle $b + H_{3, 1}(X)$.}
\end{figure}
\end{block}
\end{column}
\separatorcolumn
\begin{column}{\colwidth}
\begin{block}{Homotopy (\emph{Non-Abelianized Loops!})}
Homotopy is a vast discipline so we will only cover it very briefly. A \textbf{$n$-loop} $\gamma$ in a \emph{pointed topological space} X with base $p \in X$ is an $n$-cycle i.e. $\partial_n \gamma = 0$. The \textbf{$n$-loop space} $\mc{L}_n(X)$ is the set of all $n$-loops containing the base i.e., $\mc{L}_n(X) = \{ \gamma \in \sing_n(\mb{R}^{n+1}) : p \in \gamma(\Delta^n), \partial_n \gamma = 0 \}$. We say that two loops $\gamma, \delta \in \mc{L}_n(X)$ are \textbf{homotopic} i.e. $\gamma \sim \delta$ iff there exists a $C^1$ map called a \textbf{homotopy} $h : \Delta^1 \times \Delta^n \to \mc{L}_n(X)$ s.t. $h(e_0, \cdot) = \gamma$ and $h(e_1, \cdot) = \delta$, allowing us to define the \textbf{$n$-th homotopy group} of $X$,
\begin{highlight}
$$\pi_n(X) = \mc{L}_n(X)/\sim$$
\end{highlight}
To complete the notion of a homotopy group, we define the \textbf{concatenation} of $n$-loops as the $\Psi$-composition of the \textbf{wedge sum} of their domains, $x \in \Delta^n \vee \Delta^n \implies (\gamma * \delta)(x) = \sigma_n(\Psi(x))$ where $\Delta^n \vee \Delta^n = \left( \Delta^n \sqcup \Delta^n \right)/\equiv$ with $\Delta^n \sqcup \Delta^n$ being their \textbf{disjoint union} $\Delta^n \times \{ 0 \} \cup \Delta^n \times \{ 1 \}$ and $\equiv$ identifying the faces $\phi^n_n(\Delta^{n-1})$ and $\phi^n_1(\Delta^{n-1})$. Furthermore, $\Psi$ is the map $\Delta^n \vee \Delta^n \to \Delta^n$. Informally, this corresponds to gluing the said faces together. $(\pi_n(X), *)$ are \emph{non-Abelian groups} with the identity element being the \textbf{constant curve} $\gamma_e = \pi_{\{ p \}}$. Finally, a loop $\gamma \in \mc{L}(X)$ is \textbf{contractible} if it is \textbf{null-homotopic} i.e. homotopic to $\gamma_e$.
Therefore, \emph{each non-contractible homotopy class in $\pi_n(X)$ represents a hole with an $n$-dimensional boundary!}
\end{block}
\begin{block}{Holonomies (\emph{States are loop-like, \emph{not} point-like!!!})}
Let $\mu$ be a \textbf{Borel measure} on $X$ i.e. any measure on its \emph{$\sigma$-algebra of Borel sets}, $\mf{B}$ (which is the smallest $\sigma$-algebra on X containing its \emph{open sets}). Let $A$ be, for brevity, a scalar field $X \to \mb{R}$ representing a \textbf{physical observable} with $X$ being the \emph{configuration space} and $\mb{R}$ being the \emph{state space}. Then, the \textbf{holonomy} corresponding to $A$ along an $n$-loop $\gamma \in \mc{L}_n(X)$ is given by the $\mb{Z}$-linear functional,
$$W_A[\gamma] = \bigointsss_{x \in \gamma(\Delta^n)} d \mu \: A(x)$$
Now, by the Fundamental Theorem of Calculus, the state space $\mc{S}(X)$ corresponding to $p \in X$ is the set of holonomies for all loops based at $p$,
$$\mc{S}(X) = \bigcup_{n = 0}^{\infty} \: \bigcup_{\gamma \in \mc{L}_n(X)} \{ W_A[\gamma] \}$$
As a result, \textbf{if we forget paths which do not update $A$, the state space is identical to the modded loop space!} This is an unexpected physical consequence of the first isomorphism theorem:
\begin{highlight}
$$\mc{S}(X) \cong_{\text{Set}} \mc{L}(X)/{\ker(W_A)}$$
\end{highlight}
$A$ is said to be \textbf{holonomic} if its holonomy is \emph{trivial} i.e. $\ker(W_A) = \mc{L}(X)$. Then, $\mc{S}(X)$ is the singleton $\{ A(p) \}$, allowing us to use the usual functional treatment to manipulate states. However, in general, $A$ is otherwise i.e. \textbf{non-holonomic}, and the best we can treat states is as sections of the bundle $(S(X), \varphi \circ \pi_{\{ p \}}, \{ p \})$ which is bundle-isomorphic to $(\mc{L}(X), \pi_{\{ p \}}, \{ p \})$ where $\varphi : \mc{S}(X) \to \mc{L}(X)$.
\end{block}
\begin{block}{References}
\nocite{*}
\footnotesize{\bibliographystyle{plain}\bibliography{poster}}
\end{block}
\end{column}
\separatorcolumn
\end{columns}
\end{frame}
\end{document}