forked from lschmidtke/shape_templates
-
Notifications
You must be signed in to change notification settings - Fork 1
/
pretrained_model_inf.py
132 lines (97 loc) · 4.47 KB
/
pretrained_model_inf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import kornia
import argparse
import torchvision.transforms as transforms
from src.core.old_networks import ParameterRegressor
from src.core.utils.helper import draw_template, load_anchor_points, show_images
from src.core.utils.transforms import transform_anchor_points
import cv2
import glob
import matplotlib.pyplot as plt
class Predictor:
def __init__(self, batch_size, num_parts, device, template_path, anchors_path):
self.I = torch.Tensor([[1, 0, 0], [0, 1, 0]]).view(1, 1, 2, 3).repeat(batch_size, num_parts, 1, 1).to(device)
self.aug = torch.Tensor([0, 0, 1]).view(1, 1, 1, 3).repeat(batch_size, num_parts, 1, 1).to(device)
self.net = ParameterRegressor(n_f=32, num_joints=num_parts).to(device)
self.template = draw_template(template_path, size=256, batch_size=batch_size, device=device)
self.core, self.double, self.single = load_anchor_points(anchors_path, device, batch_size)
self.net = self.net.eval()
# reorder the parts/anchors from old to new ordering
self.indices = [0, 1, 2, 3, 4, 11, 12, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17]
def load_checkpoint(self, path):
self.net.load_state_dict(torch.load(path, map_location=torch.device('cpu'))['regressor_network'], strict=False)
def transform(self, template, params):
# translation should be in range from 0 to roughly 1, so scale up here
# params[:, 0:3, -1] = params[..., -1] * 256
warped_template = kornia.geometry.affine(template, params)
return warped_template
def predict(self, frame):
"""
frame: shape [b, 3 (bgr), height, width], to normalize run
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
totensor = transforms.ToTensor()
transform = transforms.Compose([totensor, normalize])
"""
params, _ = self.net(frame, self.template)
params = self.I + params
params = params[:, self.indices]
params[..., -1] *= 256
A = torch.cat([params, self.aug], dim=-2)
transformed_anchors = transform_anchor_points(A, self.core, self.double, self.single)
batched_params = params.view(-1, 2, 3)
batched_template = self.template.view(-1, 256, 256).unsqueeze(1)
warped_heatmaps = self.transform(batched_template, batched_params)
warped_heatmaps = warped_heatmaps.view(-1, 18, 256, 256)
return warped_heatmaps, transformed_anchors[0], transformed_anchors[1], transformed_anchors[2]
device = torch.device('cpu')
pred = Predictor(batch_size=1, num_parts=18, device=device, template_path='/content/shape_templates/template.json',
anchors_path='/content/shape_templates/anchor_points.json')
#checkpoint = torch.load('/content/shape_templates/checkpoint.tar', map_location=torch.device('cpu'))
#print(f"checkpoint: {checkpoint}")
pred.load_checkpoint('/content/shape_templates/checkpoint.tar')
"""
print("Model's state_dict:")
for param_tensor in checkpoint['state_dict']():
print(param_tensor, "\t", checkpoint['state_dict'][param_tensor].size())
"""
imgs_root = r"/content/shape_templates/val2017"
img_pths = glob.glob(imgs_root + "/*")
import matplotlib.pyplot as plt
from scipy.misc import face
import numpy
i = 0
for pth in img_pths:
img = cv2.imread(pth)
#img = cv2.imread(r"/content/frame61.png")
img = cv2.resize(img, (256, 256))
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
img = torch.unsqueeze(torch.from_numpy(img), dim=0)
img = img.permute((0, 3, 1 , 2))
img = img/255
#print(f"img shape: {img.shape}, img: {img}")
prediction = pred.predict(img)
res = prediction[0].detach().numpy()
#print(f"prediction[1].shape: {prediction[1].shape}, prediction[2].shape: {prediction[2].shape}, prediction[3].shape: {prediction[3].shape}")
#plot the result on img & save
#res = list(res)
#res = show_images(res[0], renorm=False)
#plt.plot(res[0])
x = 6
y = 3
fig,axarr = plt.subplots(x,y)
ims = [face() for i in range(x*y)]
print(f"ims[0].shape: {ims[0].shape}")
img_sum = numpy.zeros_like(res[0][0])
for ax,im in zip(axarr.ravel(), res[0]):
ax.imshow(im) #, cmap='hot', interpolation='nearest')
img_sum = numpy.add(img_sum, im)
print(f"img_sum.shape: {img_sum.shape}")
fig.savefig(f'grids/grid_{i}.png')
cv2.imwrite(f"grids/sum_{i}.png", img_sum*255)
print(f"img_sum: {img_sum}")
i += 1
#print(f"img.shape: {img.shape}, res: {res}")
if i >= 20:
break
plt.show()