-
Notifications
You must be signed in to change notification settings - Fork 1
/
Massachusetts_SGP_2021_PART_C.R
92 lines (81 loc) · 3.35 KB
/
Massachusetts_SGP_2021_PART_C.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
################################################################################
### ###
### SGP LAGGED projections for skip year SGP analyses for 2021 ###
### ###
################################################################################
### Load packages
require(SGP)
require(SGPmatrices)
### Load data
load("Data/Massachusetts_SGP.Rdata")
### Load configurations
source("SGP_CONFIG/2021/PART_C/ELA.R")
source("SGP_CONFIG/2021/PART_C/MATHEMATICS.R")
MA_CONFIG <- c(ELA_2021.config, MATHEMATICS_2021.config)
### Parameters
parallel.config <- list(BACKEND="PARALLEL", WORKERS=list(PERCENTILES=4, BASELINE_PERCENTILES=4, PROJECTIONS=4, LAGGED_PROJECTIONS=4, SGP_SCALE_SCORE_TARGETS=4))
### Add Baseline matrices to SGPstateData and update SGPstateData
SGPstateData <- addBaselineMatrices("MA", "2021")
SGPstateData[["MA"]][["Growth"]][["System_Type"]] <- "Baseline Referenced"
# Establish required meta-data for LAGGED projection sequences
SGPstateData[["MA"]][["SGP_Configuration"]][["grade.projection.sequence"]] <- list(
ELA_GRADE_3=c(3, 4, 5, 6, 7, 8, 10),
ELA_GRADE_4=c(3, 4, 5, 6, 7, 8, 10),
ELA_GRADE_5=c(3, 5, 6, 7, 8, 10),
ELA_GRADE_6=c(3, 4, 6, 7, 8, 10),
ELA_GRADE_7=c(3, 4, 5, 7, 8, 10),
ELA_GRADE_8=c(3, 4, 5, 6, 8, 10),
ELA_GRADE_10=c(3, 4, 5, 6, 7, 8, 10),
MATHEMATICS_GRADE_3=c(3, 4, 5, 6, 7, 8, 10),
MATHEMATICS_GRADE_4=c(3, 4, 5, 6, 7, 8, 10),
MATHEMATICS_GRADE_5=c(3, 5, 6, 7, 8, 10),
MATHEMATICS_GRADE_6=c(3, 4, 6, 7, 8, 10),
MATHEMATICS_GRADE_7=c(3, 4, 5, 7, 8, 10),
MATHEMATICS_GRADE_8=c(3, 4, 5, 6, 8, 10),
MATHEMATICS_GRADE_10=c(3, 4, 5, 6, 7, 8, 10))
SGPstateData[["MA"]][["SGP_Configuration"]][["content_area.projection.sequence"]] <- list(
ELA_GRADE_3=rep("ELA", 7),
ELA_GRADE_4=rep("ELA", 7),
ELA_GRADE_5=rep("ELA", 6),
ELA_GRADE_6=rep("ELA", 6),
ELA_GRADE_7=rep("ELA", 6),
ELA_GRADE_8=rep("ELA", 6),
ELA_GRADE_10=rep("ELA", 7),
MATHEMATICS_GRADE_3=rep("MATHEMATICS", 7),
MATHEMATICS_GRADE_4=rep("MATHEMATICS", 7),
MATHEMATICS_GRADE_5=rep("MATHEMATICS", 6),
MATHEMATICS_GRADE_6=rep("MATHEMATICS", 6),
MATHEMATICS_GRADE_7=rep("MATHEMATICS", 6),
MATHEMATICS_GRADE_8=rep("MATHEMATICS", 6),
MATHEMATICS_GRADE_10=rep("MATHEMATICS", 7))
SGPstateData[["MA"]][["SGP_Configuration"]][["max.forward.projection.sequence"]] <- list(
ELA_GRADE_3=6,
ELA_GRADE_4=6,
ELA_GRADE_5=6,
ELA_GRADE_6=6,
ELA_GRADE_7=6,
ELA_GRADE_8=6,
ELA_GRADE_10=6,
MATHEMATICS_GRADE_3=6,
MATHEMATICS_GRADE_4=6,
MATHEMATICS_GRADE_5=6,
MATHEMATICS_GRADE_6=6,
MATHEMATICS_GRADE_7=6,
MATHEMATICS_GRADE_8=6,
MATHEMATICS_GRADE_10=6)
### Run analysis
Massachusetts_SGP <- abcSGP(
Massachusetts_SGP,
steps=c("prepareSGP", "analyzeSGP", "combineSGP", "outputSGP"),
sgp.config=MA_CONFIG,
sgp.percentiles=FALSE,
sgp.projections=FALSE,
sgp.projections.lagged=FALSE,
sgp.percentiles.baseline=FALSE,
sgp.projections.baseline=FALSE,
sgp.projections.lagged.baseline=TRUE,
sgp.target.scale.scores=TRUE,
parallel.config=parallel.config
)
### Save results
save(Massachusetts_SGP, file="Data/Massachusetts_SGP.Rdata")