-
Notifications
You must be signed in to change notification settings - Fork 2
/
yolo.py
133 lines (112 loc) · 5.2 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/python
import numpy as np
import argparse
import time
import cv2 as cv
import os
def runYOLODetection(args):
# load my fish class labels that my YOLO model was trained on
labelsPath = os.path.sep.join([args["yolo"], "fish.names"])
#labelsPath = os.path.sep.join([args["yolo"], "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# initialize a list of colors to represent each possible class label
np.random.seed(0)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),
dtype="uint8")
print(COLORS)
#COLORS = np.array([255, 0, 0], dtype="uint8")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([args["yolo"], "fish.weights"])
configPath = os.path.sep.join([args["yolo"], "fish_test.cfg"])
#weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])
#configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])
# load my YOLO object detector trained on my fish dataset (1 class)
print("[INFO] loading YOLO from disk ...")
net = cv.dnn.readNetFromDarknet(configPath, weightsPath)
# load input image and grab its spatial dimensions
image = cv.imread(args["image"])
(H, W) = image.shape[:2]
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# construct a blob from the input image and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes and
# associated probabilities
# NOTE: (608, 608) is my YOLO input image size. However, using
# (416, 416) results in much accutate result. Pretty interesting.
blob = cv.dnn.blobFromImage(image, 1 / 255.0, (416, 416),
swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
# show execution time information of YOLO
print("[INFO] YOLO took {:.6f} seconds.".format(end - start))
# initialize out lists of detected bounding boxes, confidences, and
# class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability) of
# the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater then the minimum probability
if confidence > args["confidence"]:
# scale the bounding box coordinates back relative to the
# size of the image, keeping in mind that YOLO actually
# returns the center (x, y)-coordinates of the bounding
# box followed by the boxes' width and height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top and
# left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update out list of bounding box coordinates, confidences,
# and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weark and overlapping bounding
# boxes
idxs = cv.dnn.NMSBoxes(boxes, confidences, args["confidence"],
args["threshold"])
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the image
color = [int(c) for c in COLORS[classIDs[i]]]
cv.rectangle(image, (x, y), (x + w, y + h), color, 2)
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
cv.putText(image, text, (x, y - 5), cv.FONT_HERSHEY_SIMPLEX,
0.5, color, 2)
return image
if __name__ == '__main__':
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image")
ap.add_argument("-y", "--yolo", required=True,
help="base path to YOLO directory")
ap.add_argument("-c", "--confidence", type=float, default=0.25,
help="minimum probability to filter weak detections")
ap.add_argument("-t", "--threshold", type=float, default=0.45,
help="threshold when applying non-maxima suppression")
args = vars(ap.parse_args())
image = runYOLODetection(args)
# show the output image
#cv.namedWindow("Image", cv.WINDOW_NORMAL)
#cv.resizeWindow("image", 1920, 1080)
cv.imshow("Image", image)
#cv.imwrite("predictions.jpg", image)
cv.waitKey(0)