forked from nishantrathi100/Yelp-Data-Mining
-
Notifications
You must be signed in to change notification settings - Fork 0
/
businessLocalModel.py
59 lines (48 loc) · 2.01 KB
/
businessLocalModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from trainBusinessDataDirectory import *
from testDataDirectory import *
from util import *
from sklearn.neighbors import KNeighborsRegressor
from SentimentAnalysis import *
from NMFModel import *
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVR
def getBusinessTrainData(businessId):
reviewrows =[]
reviewratings=[]
counter=0
for b in getTrainBusinessAllBusiness():
if(b==businessId):
reviewrows.append(counter)
reviewratings.append(float(getTrainBusinessAllActualRating()[counter]))
counter=counter+1
return reviewrows,reviewratings
def getBusinessTestData(businessId):
reviewrows =[]
reviewratings=[]
counter=0
for b in getTestAllBusiness():
if(b==businessId):
reviewrows.append(counter)
reviewratings.append(float(getTestAllActualRating()[counter]))
counter=counter+1
return reviewrows,reviewratings
def predict_business_local_rating(businessId,reviewdata):
reviewrows,reviewratings = getBusinessTrainData(businessId)
print len(reviewrows)
train_reviews = getTrainBusinessAllDocFullI(reviewrows)
predicted_sentiment = predictSentiment(train_reviews,reviewdata,reviewratings)
train_reviews.append(reviewdata)
reviewratings.append(predicted_sentiment)
nmdf,vocab = nmfsentimentModel(train_reviews,reviewratings, n_components=5,n_top_words=10,n_features=1000)
test_reviewrows,test_reviewratings = getBusinessTestData(businessId)
ans={}
clfs = [ LogisticRegression(),
KNeighborsRegressor(n_neighbors=3),
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='auto',kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
]
clf_names = ['Logistic Regression','KNeighbors Regressor','SVR']
for (i, clf_) in enumerate(clfs):
neigh=clf_.fit(nmdf[:-1], reviewratings[:-1])
predicted = neigh.predict(nmdf[len(train_reviews)-1:])
ans[clf_names[i]] = predicted[0]
return ans