-
Notifications
You must be signed in to change notification settings - Fork 0
/
Demo_OCSCI.m
39 lines (38 loc) · 1.1 KB
/
Demo_OCSCI.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
% AN EFFICIENT K-SCA BASED UNERDETERMINED CHANNEL IDENTIFICATION
% ALGORITHM FOR ONLINE APPLICATIONS
% Ehsan Eqlimi and Dr.Bahador Makkiabadi
% Department of Medical Physics & Biomedical Engineering,Tehran University
% of Medical Physiscs (TUMS),Tehran,Iran
% E-mails: Eghlimi@razi.tums.ac.ir, b-makkiabadi@tums.ac.ir
clc
clear
close all
% The number of sensors
m=4;
% The number of sources
n=7;
% The number of active sources
k=m-1;
% The number of time samples
T=2000;
% To generate a mixing matrix based on k-SCA assumation (A1)
Th=0.1;Iter=700;
% Mixing matrix generation
[A,kr]=FnMixingMarixGen(m,n,Th,Iter);
% Source matrix generation
S=FnSourceGenr(n,m,T,k);
% Mixed data generation
X=A*S;
% The number of recieved data
WS=3;
% Underdetemined blind identification based on OCSCI method (online)
Ahat=FnOnContSel_CI(X,m,n,WS);
% Optimally Ordering
A=(FnNormalizer(abs(A)));
Ahat=(FnNormalizer(abs(Ahat)));
[Ahat,M]=Fnnearest2(Ahat,A);
% Error between the original mixing martxi (A) and estimated mixing
% matrix(Ahat)using BAS distance
A
Ahat
BAS=FnBiasedAnglesSum(Ahat,A);