Releases: FluxML/Flux.jl
Releases · FluxML/Flux.jl
v0.13.3
Flux v0.13.3
Merged pull requests:
v0.13.2
Flux v0.13.2
Closed issues:
Merged pull requests:
- Unify
ecosystem.md
(#1923) (@Saransh-cpp) - Updated path to DiffImages.jl (#1964) (@arcAman07)
- Explain
stride≠1
case for SamePad (#1965) (@KronosTheLate) - fast sigmoid (#1968) (@oysteinsolheim)
- CompatHelper: bump compat for ArrayInterface to 6, (keep existing compat) (#1969) (@github-actions[bot])
v0.13.1
Flux v0.13.1
Closed issues:
- Batchnorm on GPU for Float64 values (#1897)
- Tag? (#1924)
- DataLoader causes scalar indexing on GPU in Flux v0.13.0 (regression) (#1935)
- Flux.flip with broadcasting warning (#1936)
- Add a workflow to clean-up
gh-pages
branch? (#1940) - DimensionMismatch: All data containers must have the same number of observations. (#1941)
- Type instability in Recur for 3 dimensional arrays (#1947)
- What is the idiomatic way to get training loss from
gradient()
? (#1950) - Dropout erroring on latest CUDA (#1960)
- AdaBelief issues (#1962)
Merged pull requests:
- Add a ton of doctests + fix outdated documentation in
.md
files (#1916) (@Saransh-cpp) - Get the DocBot up again! (#1937) (@Saransh-cpp)
- Broadcasting replaced with comprehension in the Flux.flip function. (#1938) (@fpartl)
- Fix type instabilities in apply!(optimizer, ...) (#1942) (@ancapdev)
- Add a workflow to delete PR previews (#1943) (@Saransh-cpp)
- Fix for progress logging to non-VS Code loggers (#1944) (@darsnack)
- Add Base.firstindex(c::Chain) = 1 (#1945) (@KronosTheLate)
- Recur type stability for 3d arrays (#1948) (@Marcovela)
- Resolve two warnings in the test suite (#1951) (@mcognetta)
- Update documentation on Split layer (#1953) (@JLDC)
- [docs] suggest using ADAM with LR=1 when combined with ExpDecay (#1955) (@ericphanson)
- Type stable
conv_reshape_bias
and AD-friendlyConvDims
helpers (#1956) (@ToucheSir) - onehotbatch with CuArray (#1959) (@CarloLucibello)
- AdaBelief bias correction (#1963) (@cossio)
v0.13.0
Flux v0.13.0
Changes in NEWS.md
Closed issues:
- DepthwiseConv does not run on GPU (#459)
- Flux type piracy breaks REPL completions (#629)
- Cannot do double iteration of DataLoader (#1227)
- elu activation fails on nested pullbacks on GPU (#1383)
- Training not working for 1D types (#1479)
- adjoint of conv adjoint. (#1665)
pullback
'sback
returns unexpected size if some parameters are not used (#1601)- Allow specification of RNG in Dropout (#1617)
- deprecate DepthwiseConv once we have groups in standard conv (#1667)
Parallel
edge-cases (#1685)- Layer printing interferes with different element types (#1690)
- Normalization Layers not interating well with destructure/restructure (#1727)
- missing docstring for
Flux.params
andtrainable
(#1732) - inconsistency between params and destructure (#1733)
- Parameter Sharing breaks
destructure
(#1767) - Remove Juno.jl dependency (#1779)
Flux.destructure
's restructure fails in the gradient if loss does not use all parameters (#1826)Flux.chunk
for multi-dimensional arrays (#1841)- onehotbatch performance (#1844)
- Issue taking gradients of Chains on GPU (#1853)
Chain
forgets names underfmap
(#1857)- Recurrent 3d interface uses a lot of memory (#1872)
- Gradient incorrect for Conv-layer and complex numbers (#1876)
- Add Siamese Contrastive Loss function (#1880)
- Urgent GSoC revisions are needed. (#1890)
- Flux v0.12.9 and the Flux.Tracker.gradient is wrong, why? (#1898)
- LoadError UnderVarError: flatten not defined (#1899)
- Proposal: Move
params
to Zygote (#1900) - This one is not in use, which one should I use instead in Flux? (#1903)
- ERROR: LoadError: Can't differentiate foreigncall expression (#1904)
- Missing docstring for
Flux.Data.Dataloader
(#1909) - Different
Julia
versions at different places for doctests (#1914) Parallel
layer behaves diffferently in aChain
than on its own (#1919)- ADAMW not stable (#1920)
- Chain ignores Base.show function of custom layer (#1929)
Merged pull requests:
- v0.13 deprecations (#1751) (@CarloLucibello)
- Print channel dimensions of
Dense
like those ofConv
(#1658) (@mcabbott) - Replace unrolled
foldl
used to evaluateChain
with a better one (#1809) (@mcabbott) - Zero is a real number (
Flux.Nil
) (#1830) (@mcabbott) - Use faster activation functions (#1837) (@mcabbott)
- Add RNG support for Dropout/AlphaDropout (#1849) (@darsnack)
- Fix CI to run on LTS + latest + nightly (#1852) (@darsnack)
- Fix type-stability for normalization layers (#1856) (@pxl-th)
- Use ProgressLogging instead of Juno (#1859) (@darsnack)
- Speed up
onehotbatch
(#1861) (@mcabbott) - Simplify
trainable
,functor
andParallel
(#1862) (@mcabbott) - Replace
@adjoint
withrrule
(#1863) (@mcabbott) - Depend on Optimisers.jl (#1864) (@mcabbott)
- rationalize CI (#1865) (@CarloLucibello)
- Updated Dropout for more input types. (#1867) (@ShoofLLC)
- fix adamw (#1868) (@CarloLucibello)
- Add OperatorLearning.jl to Flux downstream tests (#1869) (@ChrisRackauckas)
- Mark dropout_mask as non-differentiable (#1870) (@ToucheSir)
- Recurrent benchmarks (#1871) (@mkschleg)
- Changed view to eachslice for folding in recurrent (#1873) (@mkschleg)
- use MLUtils (#1874) (@CarloLucibello)
- Add a structural
loadparams!
(#1875) (@darsnack) - Truncated normal initialisation for weights (#1877) (@theabhirath)
- Extending
Diagonal
(#1881) (@theabhirath) - rm Flux.Zeros (#1882) (@mcabbott)
- CompatHelper: add new compat entry for SpecialFunctions at version 2, (keep existing compat) (#1883) (@github-actions[bot])
- Make RNN layers accept
in => out
(#1886) (@mcabbott) - Speeding up onehotbatch by creating OneHotArray directly (#1888) (@TLipede)
- CompatHelper: bump compat for MLUtils to 0.2, (keep existing compat) (#1889) (@github-actions[bot])
- Addition of Siamese Contrastive Loss function ( Updated ) (#1892) (@arcAman07)
- Buildkite: don't persist registry across runs (#1893) (@ToucheSir)
- Use
destructure
from Optimisers.jl (#1901) (@mcabbott) - RFC: Restrict
train!
toAbstractOptimiser
(#1902) (@mcabbott) - Add
dims
keywords to some tests (#1906) (@mcabbott) - Mark initialisations nograd, restrict signatures (#1908) (@mcabbott)
- Add
MLUtils
's docs and fix some missing docstrings (#1910) (@Saransh-cpp) - Improvements for LayerNorm (#1911) (@theabhirath)
- Improve docs for initialisation (#1912) (@mcabbott)
- Turn off doctests while building docs (#1915) (@Saransh-cpp)
- dampening -> damping (#1918) (@alhirzel)
- remove DepthwiseConv type in favor of Conv (#1921) (@CarloLucibello)
- Allow activation function for Diagonal (#1925) (@theabhirath)
- Upgrade warnings for v0.13 (#1926) (@mcabbott)
- Rename
Diagonal
toScale
(#1927) (@mcabbott) - Fix a code block (#1933) (@prbzrg)
v0.12.10
Flux v0.12.10
Closed issues:
- ADAMW not stable (#1920)
Merged pull requests:
- CompatHelper: bump compat for ArrayInterface to 5, (keep existing compat) (#1895) (@github-actions[bot])
- fix adamw (#1868) (@CarloLucibello)
v0.12.9
Flux v0.12.9
Closed issues:
- Coverage (#89)
- Support for grouped convolutions (#330)
- onehot.md in docs should not have subtitle "Batches" (#510)
- Repo tagged with the "the-human-brian" (potential typo) (#512)
- RNNs, batching and sequences (#705)
- Model Zoo Housing.jl Example functionality not clear (#769)
- Asymmetric padding fails on gpu models (#775)
- Can't get user defined model to work (#812)
- Cryptic error in Flux#zygote "Can't differentiate foreigncall expression" (#817)
- Passing transposed matrix to softmax causes scalar indexing on GPU, which is very slow (#888)
- Does it support training on multiple GPUs? (#910)
- batched_mul causes a 'cannot take the CPU address of a CuArray' error on GPU (#1090)
- CTC loss (#1135)
- Inconsistent behavior of gradient of empty matrices (#1151)
- Flux.Conv type instability (#1178)
- CUDA.jl (#1194)
- Incorrect types following CUDA.jl refactoring (#1200)
- Got an error, while trying to implement softplus with beta (#1216)
- test regression with recurrent neural networks (#1245)
- regression in RNN with OneHotMatrix and CUDA (#1262)
- Gradient calculation bug re-introduced in Flux v0.10.4 and Zygote v0.4.22 (#1269)
- LSTM "succeeds" on data with incompatible dimensions (#1396)
- Document conv data handling, especially for 1d (#1465)
- Flux.destructure gives DimensionMismatch error in backward pass due to Chain of mutable struct(s) (#1502)
- Adjoints for regularizers? (#1575)
- Zygote error: UndefVarError: S not defined (#1578)
- Warning using Flux on Linux device without CUDA or Nvidia card (#1581)
- Flux downloads CUDA110 Artifacts every time I precompile on Ubuntu (#1600)
- Why does calling the gpu function not return an error when CUDA is unavailable (#1634)
- Flux errors on Julia 1.7 Beta 2 (#1652)
- LLVM 4.x.x compatibility (#1669)
- Add better docs for the LSTM function (#1696)
- Recurrent docs out of sync (#1714)
- Docs haven't built since Aug. 3 (#1723)
- Investigate nightly CI build issues (#1724)
- unsqueeze is not type stable (#1737)
- failing doc tests (#1739)
- Link to "train!" gives 404 page not found error on the website. (#1745)
- Issues model with custom gradient (w.r.t. input variable) layer (#1760)
- Flux.loadparams! is slow. (#1764)
- world age issues when loading a bson file containing a model with flux utility functions (#1769)
- How to fast find source code of function, like Dense() Chain() (#1770)
- How to get the mathematical expression of Neural Network. (#1771)
- How to write a seq of w_i: w_1, w_2, ... , w_1000 (#1773)
- Error when training simple Flux model (#1777)
- Differentiating through my custom struct its restructuring throws an error (#1796)
- Incompatibility with SpecialFunctions 2.0 (#1802)
- Buildkite CI failures with grad test of
ConvTranspose
+selu
(#1804) - Slowdown when running multiple large models in parallel (#1806)
- ERROR: LoadError: Some tests did not pass: 252 passed, 1 failed, 0 errored, 21 broken. in expression starting at /home/ian/.julia/packages/Flux/BPPNj/test/runtests.jl:11 ERROR: Package Flux errored during testing (#1814)
- Can ExpDecay of learning rate start at some intermediate step? (#1815)
- Optimisers epsilon (#1818)
- Zygote Flux and custom adjoints on GPU (#1828)
- TypeErro in DEQ example: non-boolean (Nothing) used in boolean context #677 (#1846)
Merged pull requests:
- Clarify that
params
updates (#1752) (@KronosTheLate) - Add custom model example to docs. (#1758) (@Gregliest)
- Make unsqueeze type stable (#1759) (@cossio)
- Use view for RNN gate slice extraction (#1761) (@ToucheSir)
- Doc update (saving.md): removed outdated info; Typo fix. (#1762) (@NightMachinary)
- Doc update (recurrence.md): fixed incorrect output dimensions, clarified batching. (#1763) (@NightMachinary)
- Expand RNN/LSTM/GRU docs (#1772) (@mcognetta)
- Fix a doctest failure (#1775) (@mcognetta)
- Use conjugates in optimizers to better learn on complex-valued inputs (#1776) (@staticfloat)
- Fix AlphaDropout implementation and add tests (#1781) (@ToucheSir)
- add logo to documentation (#1782) (@kwehmeyer)
- Doc update (training.md): fix DataLoader example in Training section (#1783) (@eliascarv)
- Fix link to train in the docs (#1784) (@logankilpatrick)
- Update train.jl to add a more detailed
train!
docstring (#1785) (@logankilpatrick) - Add docstring for
params
(#1786) (@logankilpatrick) - Create a PR comment with docs preview link (#1788) (@logankilpatrick)
- Add trilinear Upsample layer (#1792) (@tknopp)
- Tidy up
Maxout
(#1794) (@mcabbott) - Simplify mse() to use
abs2()
(#1795) (@staticfloat) - Mark destructure gradient test as broken (#1797) (@ToucheSir)
- Fix failing
params
doctests (#1798) (@ToucheSir) - Only add PR comment with docs build if the docs label is added (#1799) (@logankilpatrick)
- Add more context on the behavior of the GPU function (#1800) (@logankilpatrick)
- Add warning if the GPU function is called and CUDA is not available (#1801) (@logankilpatrick)
- Add buildkite step to run on Julia LTS (#1805) (@DhairyaLGandhi)
- ExpDecay start step (#1816) (@cossio)
- make eps a parameter of optimisers (#1819) (@cossio)
- Contributor's Guide draft (#1824) (@lilianabs)
- Update conv.jl (#1825) (@rkube)
- CompatHelper: bump compat for ArrayInterface to 4, (keep existing compat) (#1827) (@github-actions[bot])
- Remove "Batches" from one hot section header in docs (#1831) (@darsnack)
- Document disabling GPUs (#1835) (@DhairyaLGandhi)
- Try using latest cu(DNN) binaries (#1836) (@ToucheSir)
- Add news for bump version (#1838) (@DhairyaLGandhi)
- move eps to the end (#1840) (@cossio)
- Add codecov on CI (#1842) (@ToucheSir)
- add token secret for codecov (#1845) (@ToucheSir)
- CompatHelper: bump compat for NNlib to 0.8, NNlibCUDA to 0.2
(keep existing compat)(#1847) (@github-actions[bot]) - Tweak docs about disabling CUDA devices (#1850) (@IanButterworth)
v0.12.8
Flux v0.12.8
Closed issues:
- Coverage (#89)
- Flux.train! stops working after the first iteration without an error. (#1692)
- Update Zygote (#1728)
- additional arguments to loss function? (#1730)
- The Purpose and Goals of Flux.jl (#1734)
- FluxML's NumFOCUS Affiliate project application (#1740)
- ConvTranspose does not support groups (#1743)
deepcopy(nn::Chain)
does not deep copy withCuArray
weights! (#1747)InvalidIRError
when putting a model on the GPU (#1754)
Merged pull requests:
- remove Manifest (#1725) (@CarloLucibello)
- add unbatch (#1726) (@CarloLucibello)
- Adds affine and track_stats params to BatchNorm docstring (#1729) (@Mottl)
- add some changes to the beginning of docs (#1736) (@DhairyaLGandhi)
- Fix doc string of Upsample (#1738) (@chunjiw)
- allow groups in ConvTranspose (#1744) (@jw3126)
- Fix Saving and loading model output example (#1746) (@logankilpatrick)
- Fix
train!
doc string 404 (#1748) (@logankilpatrick) - Fix @ Functors 404's (#1749) (@logankilpatrick)
- fix CI build (#1750) (@DhairyaLGandhi)
v0.12.7
Flux v0.12.7
Closed issues:
- Poor performance relative to PyTorch (#886)
- Recur struct's fields are not type annotated, which is causing run–time dispatch and a significant slowdowns (#1092)
- Bug: lower degree polynomial substitute in gradient chain! (#1188)
- Very slow precompile (>50min) on julia 1.6.0 on Windows (#1554)
- Do not initialize CUDA during precompilation (#1597)
- GRU implementation details (#1671)
Parallel
layer doesn't need to be tied to array input (#1673)- update! a scalar parameter (#1677)
- Support NamedTuples for Container Layers (#1680)
- Freezing layer parameters still computes all gradients (#1688)
- A demo is 1.5x faster in Flux than tensorflow, both use cpu; while 3.0x slower during using CUDA (#1694)
- Problems with a mixed CPU/GPU model (#1695)
- Flux tests with master fail with signal 11 (#1697)
- [Q] How does Flux.jl work on Apple Silicon (M1)? (#1701)
- Typos in documents (#1706)
- Fresh install of Flux giving errors in precompile (#1710)
- Flux.gradient returns dict of params and nothing (#1713)
- Weight matrix not updating with a user defined initial weight matrix (#1717)
- [Documentation] No
logsumexp
in NNlib page (#1718) - Flattened data vs Flux.flatten layer in MNIST MLP in the model zoo (#1722)
Merged pull requests:
- Add WIP docstrings to CPU and GPU (#1632) (@logankilpatrick)
- Add section on Checking GPU Availability (#1633) (@logankilpatrick)
- fix README (#1668) (@DhairyaLGandhi)
- Generalise Parallel forwards pass (#1674) (@DhairyaLGandhi)
- Adding GRUv3 support. (#1675) (@mkschleg)
- Support NamedTuples for Chain + Parallel (#1681) (@mcabbott)
- Adding support for folding RNNs over 3d arrays (#1686) (@mkschleg)
- Update nnlib.md (#1689) (@CarloLucibello)
- fix typo (#1691) (@foldfelis)
- Typo fix (#1693) (@lukemerrick)
- Remove out of date dead code in Conv layers (#1702) (@ToucheSir)
- Gradient definitions for
cpu
&gpu
(#1704) (@mcabbott) - Fix #1706 (#1707) (@rongcuid)
- Add GPU Adaptor (#1708) (@DhairyaLGandhi)
- Initialize CUDA lazily. (#1711) (@maleadt)
- Update community.md to reflect help wanted != good first issue (#1712) (@logankilpatrick)
- Fix link in README (#1716) (@nilsmartel)
- Add logsumexp to docs (#1719) (@DhairyaLGandhi)
v0.12.6
Flux v0.12.6
Merged pull requests:
- Add grouped convolution (#1531) (@DhairyaLGandhi)
- fix deprecations of zeros (#1670) (@DhairyaLGandhi)
- Add GPU activation tests for grouped conv (#1672) (@DhairyaLGandhi)
v0.12.5
Flux v0.12.5
Closed issues:
- Hessian vector products (#129)
- Stopping criteria (#227)
- Flux + Julia ecosystem docs (#251)
- RNN unbroadcast on GPU not working (#421)
- Shouldn't gradcheck compares Jacobian? (#462)
- Transition examples in docs to doctests (#561)
- Batch-axis thread parallelism (#568)
- Add tests of ExpDecay (#684)
- Sudden memory leak when training on GPU over many epochs (#736)
- performance variance between macOS / Linux ? (#749)
- onehot ambiguous method (#777)
- Killed while training the model (#779)
- type Method has no field sparam_syms, while @save model (#783)
- Flux#zygote Error in phenomes... Mutating arrays is not supported (#819)
- Custom serialization pass for intermediate states (#845)
- OneHotMatrix does not support map (#958)
- CuArrays + huber_loss iterate(::nothing) error (#1128)
- Can't get Flux (v0.10.3) working for Custom Loss function (#1153)
- Custom loss function on subset of parameters fails (#1371)
- Minimizing sum fails (#1510)
gpu
behaves differently fromcu
on a Char array (#1517)- Warn different size inputs in loss functions (#1522)
- Recurrent docs need to be update for v0.12 (#1564)
- Computation of higher order derivatives for recurrent models results in strange errors (#1593)
- Why does
DataLoader
not throw an error when fed with a 1D vector for the target? (#1599) - a small error in the documentation... (#1609)
- Slow unnecessary GPU copy of output of
gpu(::OffsetArray)
(#1610) - "using Flux" makes type inference fail when there is a Ref{} (#1611)
- @epochs is missing a bracket (#1615)
- Flux Overview Documentation Out of Date (#1621)
- missing kernel for Base.unique (#1622)
- Compilation error on PPC (#1623)
_restructure
as part of the public API? (#1624)- ERROR: setindex! not defined for Zygote.OneElement{...} (#1626)
- MethodError: Cannot
convert
an object of type Params to an object of type Float64 (#1629) - MethodError: no method matching flatten(::Array{Float32,4}) (#1630)
- Where are the
cpu()
andgpu()
functions? (#1631) - bug in RNN docs (#1638)
- Bug in the current overview documentation (#1642)
- How to tell Flux.jl not to use the GPU? (#1644)
- Missing docs for @functor (#1653)
- typo in the docs/overview section right at the beginning (#1663)
Merged pull requests:
- multiplication of {Transpose, Adjoint} of Array and OneHotVector (#1424) (@gxyd)
- show(::Chain) (#1467) (@mcabbott)
- Add test for show(io, ::OneHotArray) on GPU (#1550) (@darsnack)
- document Join and Split error (#1607) (@magicly)
- fix typo in models overview document (#1608) (@teamclouday)
- fix AdamW and improve decays docs (#1612) (@CarloLucibello)
- use ArrayInterface.restructure in update! (#1613) (@CarloLucibello)
- Warn on reconstruct length mismatch (#1616) (@ToucheSir)
- Forward map(f, ::OneHotLike) to broadcast (#1619) (@darsnack)
- Properly move isbits and numeric arrays to GPU (#1620) (@ToucheSir)
- Update "Composing Optimisers" docs (#1628) (@StevenWhitaker)
- Fixup
Dataloader
's docstring (#1635) (@mcabbott) - Add warnings for mismatched sizes in losses (#1636) (@mcabbott)
- updated recurrence.md which fixes #1564 (#1637) (@aditkumar72)
- fix recurrence docs (#1639) (@CarloLucibello)
- Update docstring for
Conv
to clarify feature dimensions (#1646) (@vivekkumar7089) - Use correct eltype and rtol in CrossCor tests (#1650) (@ToucheSir)
- add Functors docs (#1654) (@DhairyaLGandhi)
- remove Manifest (#1657) (@CarloLucibello)
- Printing & docstrings for
onehot
/onehotbatch
(#1660) (@mcabbott) - Deprecate
Flux.zeros
(#1661) (@mcabbott)