This repository has been archived by the owner on Oct 1, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 44
/
06-A-unconstrained-ordination.Rmd
645 lines (430 loc) · 20.5 KB
/
06-A-unconstrained-ordination.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
---
layout: topic
title: "Unconstrained ordination"
author: Tad & Anna
output: html_document
---
**Assigned Reading:**
> Chapter 5 from: Borcard, D., Gillet, F. and Legendre, P. 2011. *Numerical Ecology with R.* Springer. [link](https://link.springer.com/book/10.1007/978-1-4419-7976-6)
>
> Ramette, A. 2007. Multivariate analyses in microbial ecology. *FEMS Microbiology Ecology* **62**: 142-160. [DOI: 10.1111/j.1574-6941.2007.00375.x](http:dx.doi.org/10.1111/j.1574-6941.2007.00375.x)
```{r include = FALSE}
# This code block sets up the r session when the page is rendered to html
# include = FALSE means that it will not be included in the html document
# Write every code block to the html document
knitr::opts_chunk$set(echo = TRUE)
# Write the results of every code block to the html document
knitr::opts_chunk$set(eval = TRUE)
# Define the directory where images generated by knit will be saved
knitr::opts_chunk$set(fig.path = "images/06-A/")
# Set the web address where R will look for files from this repository
# Do not change this address
repo_url <- "https://raw.githubusercontent.com/fukamilab/BIO202/master/"
```
### Key Points
#### Unconstrained vs. constrained ordination
Fig 3 in Ramette 2007 - left and right sides: Borcard et al. Ch 5 and 6, respectively
#### PCA
+ Scaling 1 -- use this if main interest is objects
"distance biplot" (distance among objects is Euclidean distance, angle among descriptors meaningless) - Fig 5.2
+ Scaling 2 -- use this if main interest is descriptors
"correlation biplot" (angles between descriptors reflect their correlations, distance among objects is not approxmate of Euclidean distance) - Fig 5.2
+ `vegan`'s default is scaling 2 (a bit strange?)
+ Combining PCA with clustering can be powerful for confirmation (Fig 5.3)
#### CA
+ Chi-square distance not influenced by double zeros, unlike Euclidian distance in PCA; data have to be frequency or freq-like
+ Scaling 1 vs. 2 – similar to PCA
+ post-hoc `envfit()` (Is constrained ordination better? Useful with NMDS?)
#### PCoA
+ Distance measured by any similarity measure
+ Q mode (objects, or sites) and R mode (variables, or species or env factors)
+ Rarely used (Ramette's Table 1) - used more now?
#### NMDS
+ Any distance matrix (commonly, Bray-Curtis dissimilarity)
+ May be sensitive to initial configuration (local optimum) - Could use PCoA ordination as a start. `metaMDS()` uses random starts
+ Needs fast computer – now not much of a problem
+ "A test winner, and a natural choice ..." (Jari Oksanen)
+ Bray-Curtis dissimilarity - Reasons why popular (Clarke and Warwick 2001):
1. 0 when identical
2. 1 when no species shared
3. Not affected by measurement unit
4. Not affected by inclusion or exclusion of species jointly absent
5. Not affected by inclusion of exclusion of a third sample
6. Differences in both total and relative abundances considered
+ Shepard diagram (Fig 5.11)
+ Stress (Clarke and Warwick 2001)
1. stress < 0.05: excellent representation
2. stress < 0.1: good representation
3. stress < 0.2: acceptable representation
4. stress > 0.3: unsatisfactory representation
#### Which method to use? (Criteria by Ramette 2007)
+ Linear (PCA) vs. unimodal (CA) - Use plot of species abundances along ordination axes as diagnosis
+ Gradient length short (PCA) vs. long (CA), as determined by DCA
+ Absolute abundance (PCA) vs. relative abundance (CA)
+ Many zeros (CA)
+ Linear (PCA) vs. non linear (NMDS, PCoA)
+ Shepard diagram to decide between NMDS and PCoA
+ Discrete groups of objects expected (cluster) vs. not expected (ordination)
#### Further reading:
> "Vegan: an introduction to ordination" by Jari Oksanen
> [link](https://cran.r-project.org/web/packages/vegan/vignettes/intro-vegan.pdf)
***
#### Unconstrained vs. constrained ordination
Fig 3 in Ramette 2007 - left and right: Borcard et al. Ch 5 and 6, respectively
#### PCA
+ Scaling 1 -- use this if main interest is objects
"distance biplot" (distance among objects is Euclidean distance, angle among descriptors meaningless) - Fig 5.2
+ Scaling 2 -- use this if main interest is descriptors
"correlation biplot" (angles between descriptors reflect their correlations, distance among objects is not approxmate of Euclidean distance) - Fig 5.2
+ `vegan`'s default is scaling 2 (a bit strange?)
+ Combining PCA with clustering can be powerful for confirmation (Fig 5.3)
#### CA
+ Chi-square distance not influenced by double zeros, unlike Euclidian distance in PCA; data have to be frequency or freq-like
+ Scaling 1 vs. 2 -- similar to PCA
+ post-hoc `envfit()` (Is constrained ordination better? Useful with NMDS?)
#### PCoA
+ Distance measured by any similarity measure
+ Q mode (objects, or sites) and R mode (variables, or species or env factors)
+ Rarely used (Ramette's Table 1) - used more now?
#### NMDS
+ Any distance matrix (commonly, Bray-Curtis dissimilarity)
+ May be sensitive to initial configuration (local optimum) - Could use PCoA ordination as a start. `metaMDS()` uses random starts
+ Needs fast computer -- now not much of a problem
+ "A test winner, and a natural choice ..." (Jari Oksanen)
+ Bray-Curtis dissimilarity - Reasons why popular (Clarke and Warwick 2001):
1. 0 when identical
2. 1 when no species shared
3. Not affected by measurement unit
4. Not affected by inclusion or exclusion of species jointly absent
5. Not affected by inclusion of exclusion of a third sample
6. Differences in both total and relative abundances considered
+ Shepard diagram (Fig 5.11) and stress
+ According to Clarke and Warwick 2001:
1. stress < 0.05: excellent representation
2. stress < 0.1: good representation
3. stress < 0.2: acceptable representation
4. stress > 0.3: unsatisfactory representation
#### Which method to use? (Criteria by Ramette 2007)
+ Linear (PCA) vs. unimodal (CA) - Use plot of species abundances along ordination axes as diagnosis
+ Gradient length short (PCA) vs. long (CA), as determined by DCA
+ Absolute abundance (PCA) vs. relative abundance (CA)
+ Many zeros (CA)
+ Linear (PCA) vs. non linear (NMDS, PCoA)
+ Shepard diagram to decide between NMDS and PCoA
+ Discrete groups of objects expected (cluster) vs. not expected (ordination)
#### Further reading:
> "Vegan: an introduction to ordination" by Jari Oksanen
> [link](https://cran.r-project.org/web/packages/vegan/vignettes/intro-vegan.pdf)
***
### Analysis Example
Unconstrained ordinations are used as exploratory methods to understand multidimensional data. Generally they use eigenvalues to represent new synthetic axes that explain the most variation in the data/cluster of samples (and are orthogonal to one another). Ordination can be thought of as a projection of multidimensional scatterplot onto new axes, ideally a few of which explain significant variation.
The most common unconstrained ordination methods are:
1. **PCA** (Principle component analysis) Often uses a correlation matrix of standardized response variables. Assumes linear relationships between variables and input data structure. PCA is for shorter environmental gradients.
2. **PCoA** (Principle coordinate analysis) uses a distance matrix as input. Shows distance or dissimilarities between objects in ordination space.
3. **CA** (Correspondence anlysis) Maximizes the correspondence between sample and species variation scores. Better for longer gradients than PCA, assumes unimodal distribution of points along axes.
4. **NMDS** (Nonmetric multidimensional scaling) ranked order not original distances and based on distance measure.
```{r libraries, message=FALSE, warning=FALSE, include=FALSE}
library(dplyr)
library(tidyr)
```
```{r, message=FALSE, warning=FALSE, include=FALSE}
# Make a new phyloseq object
library(phyloseq)
otumat2 <- read.csv("~/Documents/Stanford/Eco_stats_202/data/OTUsnormalized.csv", sep= ",") #update with proper path
rownames(otumat2) <- paste(otumat2$X) #make OTU numbers the row names
otumat2 <- otumat2%>%
select(-X) #remove OTU column
OTU <- otu_table(otumat2, taxa_are_rows = TRUE)
system.order<-c("Fresh", "Oligohaline", "Mesohaline", "Polyhaline", "Euhaline")
stat.order<-as.character(c(657, 649, 3, 6, 9, 13, 15, 18, 21, 24, 27, 30, 34, 36))
envmat <- read.csv("~/Documents/Stanford/Eco_stats_202/data/envdat_phy.csv", header=T, row.names = 1) #update with proper path
envmat$Station.Number<-as.factor(envmat$Station.Number)
envmat$system<-factor(envmat$system, levels=system.order)
ENV <- sample_data(envmat)
TREE<-read_tree("~/Documents/Stanford/Eco_stats_202/data/otu.tre") #update with proper path
physeq2 <- phyloseq(OTU, ENV, TREE)
physeq2
```
#### Prepare the data
Center and scale environmental data (or variables, could be traits of individuals, etc)
Important notes for `scale` function:
+ center = TRUE means column means are subtracted
+ scale = TRUE means centered columns are divided by standard deviations
```{r, echo=TRUE, message=FALSE, warning=FALSE}
envdat.phy <- as.data.frame(sample_data(physeq2))
envdat.phy.scaled <- scale(envdat.phy[,-c(13:16)], # cols 13:16 are factors
center=TRUE, # center data by subtracting column means
scale=TRUE) # divide centered data by standard deviation
```
```{r, echo=TRUE, message=FALSE, warning=FALSE}
str(envdat.phy.scaled)
```
#### PCA
General steps:
+ Scale and center data (some programs can do for you in the ordination step)
+ Check eigenvalues (scree plots)
+ Look at ordination plots and appropriate axes
##### Vegan package
```{r, echo=TRUE, message=FALSE, warning=FALSE}
library(vegan)
library(gclus)
library(ape)
env.pca <- rda(envdat.phy[,-c(13:16)], scale=TRUE) # rda function makes PCAs
# scale means divide by species unit variance
env.pca
```
```{r, echo=FALSE, message=FALSE, warning=FALSE}
summary(env.pca, scaling=1)
```
Look at the eigenvalues. Numerical Ecology in R recommends keeping all axes that are above the mean. One can also use the "elbow" method, look for a strong decrease in eigenvalues followed by slower decreases like a bend in the elbow. If several PCs have similar variances they are ill defined. If you include one you should include all of them as arbitrarily choosing the first one may not be the correct interpretation.
```{r}
ev <- env.pca$CA$eig
ev>mean(ev)
```
Divide eigenvalues by total inertia to explain the proportion of variance explained. Inertia should be the sum of all the eigenvalues (total variance of data). The below plots show eigenvalues with the mean plotted as a horizonatl line(top) and the broken stick model (bottom) which caluclates the eigenvalues you would expect to get if you picked PCs randomly.
```{r, message=FALSE, warning=FALSE, include=FALSE}
n<- length(ev)
bsm <- data.frame(j=seq(1:n), p=0)
bsm$p[1] <- 1/n
for(i in 2:n){
bsm$p[i] = bsm$p[i-1] + (1/(n+1-i))
}
bsm$p <- 100*bsm$p/n
```
```{r, echo=TRUE, message=FALSE, warning=FALSE}
par(mfrow=c(2,1))
barplot(ev, main="eigenvalues", col="bisque", las=2)
abline(h=mean(ev), col="red")
legend("topright", "Average eignenvalue", lwd=1, col=2)
barplot(t(cbind(100*ev/sum(ev), bsm$p[n:1])), beside=TRUE, main="% variance", col=c("bisque", 2), las=2)
```
You can look at projected points in two scalings. Scaling 1 is good for euclidean distances between objects (samples/sites). Scaling 2 is for understanding the correlation (angles between arrows) between species (variables).
```{r, echo=TRUE, message=FALSE, warning=FALSE}
par(mfrow=c(1,2))
biplot(env.pca, scaling=1, main="PCA scaling 1") # scaling 1 for distances between objects
biplot(env.pca, main="PCA scaling 2") # correlation biplot, for seeing correlation between response variables (species) see angles.
```
##### Alternative PCA functions
There are lots of functions for creating PCAs in R including `princomp` (stats) and `dudi.pca` (ade4).
Notes:
+ Eigenvalue = measures the importance of variance of an axis.
+ Inertia = "variation"; sum of variance of variables (covariance matrix) or sum of diagonal values (correlation matrix)
```{r, eval=FALSE, message=FALSE, warning=FALSE, include=FALSE}
# Just to prove that most should be doing the same things, look at single values for different methods (coefficients in front of variables to make new variables contain more information).
library(ade4)
svd(scale(envdat.phy[,-c(13:16)]))$v[,1] #single value decomposition matrix
prcomp(scale(envdat.phy[,-c(13:16)]))$rotation[,1] # principle components analysis
#rotation is matrix of variable loadings (columns contain eigenvectors), uses svd on x to get singlular values
princomp(scale(envdat.phy[,-c(13:16)]))$loadings[,1] # uses eigen on correlation/covariance matrix and determined by cor
dudi.pca(envdat.phy[,-c(13:16)], nf=2, scannf=F)$c1[,1] # center is centering by mean, scale uniform row weights, scannf is to display screeplot, nf is the number of kept axes c1 is the column normed scores
# the signs of the columns of loadings and scores are arbitrary
```
```{r, echo=TRUE, message=FALSE, warning=FALSE}
library(ade4)
pr.env2 <- prcomp(envdat.phy.scaled)
prin.env2 <- princomp(envdat.phy.scaled)
dudi.env2 <-dudi.pca(envdat.phy.scaled, center=F, scale=F, scannf=FALSE, nf=4) # ade4 library
```
```{r}
pr.env2
```
```{r, echo=TRUE, message=FALSE, warning=FALSE}
prin.env2 # sv is the standard deviations of PCs
# loadings is matrix of variable loadings, columns contain eigenvectors
# Only for looking at scaling 2??
```
```{r, echo=TRUE}
dudi.env2
```
These should all be doing the same thing, so when we look at the eigenvalues they should be the same. And it looks like the first 4 axes are important.
```{r, echo=TRUE, message=FALSE, warning=FALSE}
meaneig <-mean(dudi.env2$eig) # .98
library(factoextra)
eig0 <- fviz_eig(pr.env2, geom="bar", width=.4, title="prcomp")+theme(panel.grid=element_blank())
eig1 <- fviz_eig(prin.env2, geom="bar", width=.4, title="princomp")+theme(panel.grid=element_blank())
eig2 <- fviz_eig(dudi.env2, geom="bar", width=.4, title="dudi.pca")+theme(panel.grid=element_blank())
library(gridExtra)
grid.arrange(eig0,eig1, eig2, nrow=1)
```
```{r, echo=TRUE, message=FALSE, warning=FALSE}
p0<-fviz_pca_ind(pr.env2, geom="point",
habillage= envdat.phy$system)
p0
```
```{r, echo=TRUE, message=FALSE, warning=FALSE}
fviz_pca_ind(pr.env2, geom="point",
habillage= envdat.phy$system,
addEllipses = TRUE,
ellipse.level=.69)
```
```{r, echo=TRUE, message=FALSE, warning=FALSE}
prin.p <- fviz_pca_biplot(pr.env2,
label="var",
habillage=envdat.phy$system,
axes = 1:2)
prin.p
```
```{r, echo=TRUE, message=FALSE, warning=FALSE}
fviz_pca_var(pr.env2, col.circle="black")+
xlim(c(-1.2,1.2)) +
ylim(c(-1.2,1.2))
```
```{r, echo=TRUE, message=FALSE, warning=FALSE}
p1 <- fviz_pca_ind(pr.env2, geom="point",
habillage= envdat.phy$system,
axes= 2:3)
p2 <- fviz_pca_ind(pr.env2, geom="point",
habillage= envdat.phy$system,
axes= 3:4)
p3 <- fviz_pca_ind(pr.env2, geom="point",
habillage= envdat.phy$system,
axes= c(1,3))
p4 <- fviz_pca_ind(pr.env2, geom="point",
habillage= envdat.phy$system,
axes= c(1,4))
p5 <- fviz_pca_ind(pr.env2, geom="point",
habillage= envdat.phy$system,
axes= c(2,4))
grid.arrange(p0,p1,p2,p3,p4,p5)
```
#### CA
Should only be done on frequency data but just to show that you can use the wrong ordination if you want. The output doesn't make a whole lot of sense.
```{r}
dud.env.coa<- dudi.coa(envdat.phy[,-c(13:16)],
nf=2,
scannf=FALSE)
```
```{r}
fviz_eig(dud.env.coa)
```
Joint plot shows samples/sites and variables/species. Species are near center of inertia of samples where they are most likely to occur
```{r}
fviz_ca_biplot(dud.env.coa,
geom=c("point", "text"),
label="col")
```
#### PCoA
PCoA is common in microbial ecology. Here are some examples of PCoA on OTU counts using the phyloseq package (based on vegan).
*bray-curtis dissimilarity*
```{r, echo=FALSE}
library(phyloseq)
ord.pco3 <- ordinate(physeq2, method="PCoA", distance="bray")
p.b <- plot_ordination(physeq2,
ord.pco3,
color="Salinity",
shape="season")+
geom_point(size=3)+
scale_color_continuous(low="blue", high="goldenrod2")+
labs(main="PCoA Bray")+
theme(panel.grid=element_blank())
#ord.pco3
```
```{r}
plot_scree(ord.pco3)
```
```{r, echo=FALSE}
p.b
```
*jaccard distance*
```{r, message=FALSE, include=FALSE}
ord.pco1 <- ordinate(physeq2, method="PCoA", distance="jaccard")
p.j <-plot_ordination(physeq2,
ord.pco1,
color="Salinity",
shape="season")+
geom_point(size=3)+
scale_color_continuous(low="blue", high="goldenrod2")+
labs(main="PCoA jaccard")+
theme(panel.grid=element_blank())
plot_scree(ord.pco1)
```
```{r, echo=FALSE}
p.j
```
*wunifrac*
If you update to ape version 5.0, download the newest phyloseq version. Should be available on joey711 github if the newest bioconductor version still does not have the fix.
Unifrac is based on shared branch lengths between samples and calculated as (sum of unshared branch lengths)/(sum of all tree branch lengths (shared+unshared)). Weighted unifrac (wunifrac in phyloseq) incorporates the abundance of taxa as well.
```{r, eval=TRUE, message=FALSE, warning=FALSE, include=FALSE}
ord.pco2 <- ordinate(physeq2, method="PCoA", distance="wunifrac")
p.w <- plot_ordination(physeq2,
ord.pco2,
color="Salinity",
shape="season")+
geom_point(size=3)+
scale_color_continuous(low="blue", high="goldenrod2")+
labs(main="PCoA weighted unifrac")+
theme(panel.grid=element_blank())
plot_scree(ord.pco2)
```
```{r, eval=TRUE, include=FALSE}
p.w
```
A note on horseshoes and arch effects: if there is a lot of species turnover and samples at each end of a gradient have no overlapping species, then placing their true distance from each other is difficult. Since my gradient spans freshwater to saltwater, there is basically no overlap on the OTU level between the two ends of the gradient so a horshoe or arch is to be expected.
#### CA on taxa data
```{r}
ord.cca <- ordinate(physeq2, method="CCA")
ord.cca
```
```{r, echo=TRUE}
plot_scree(ord.cca)
```
```{r, echo=TRUE, message=FALSE, warning=FALSE}
p.cca <-plot_ordination(physeq2,
ord.cca,
color="Salinity",
shape="season")+
geom_point(size=3)+
scale_color_continuous(low="blue", high="goldenrod2")+
labs(main="CCA")+
theme(panel.grid=element_blank())
p.cca
```
#### NMDS
While the original distance between samples is not preserved, NMDS is useful for understanding ranked distances in a 2D space.
And choice of distance matters a lot!
*jaccard*
```{r, echo=TRUE, message=FALSE, warning=FALSE}
ord.nmds1 <- ordinate(physeq2, method="NMDS", distance="jaccard")
ord.nmds1
```
```{r, echo=TRUE, message=FALSE, warning=FALSE}
plot_ordination(physeq2,
ord.nmds1,
color="Salinity",
shape="season")+
geom_point(size=3)+
scale_color_continuous(low="blue", high="goldenrod2")+
scale_shape_manual(values=c(7,6,16,8))+
labs(main="stress .10")+
theme(panel.grid=element_blank())
```
*weighted unifrac*
```{r, eval=TRUE, message=FALSE, warning=FALSE, include=FALSE}
ord.nmds2 <- ordinate(physeq2, method="NMDS", distance="wunifrac")
ord.nmds2
```
```{r, eval=TRUE, message=FALSE, warning=FALSE, include=FALSE}
plot_ordination(physeq2,
ord.nmds2,
color="Salinity",
shape="season")+
geom_point(size=3)+
scale_color_continuous(low="blue", high="goldenrod2")+
scale_shape_manual(values=c(7,6,16,8))+
labs(main="stress= .07")+
theme(panel.grid=element_blank())
```
#### Indirect Gradient Analysis
Environmental fit function `envfit` from vegan can be used to get explanatory variables. Looks at correlation between ordination and environmental variables. Arrow points in the "directin of the gradient" and length reflects strength of correlation.
```{r, echo=TRUE, message=FALSE, warning=FALSE}
ef.nmds <- envfit(ord.nmds2, envdat.phy.scaled, permutations = 999)
ef.nmds
```
```{r, echo=TRUE, message=FALSE, warning=FALSE}
plot(ord.nmds2, display = "sites", cex=1)
plot(ef.nmds, p.max = 0.1)
```
### Discussion Questions
+ Do you use unconstrained ordinations?
+ What kind of data are unconstrained ordinations useful for?
+ Are they intuitive or do you need to thoroughly know linear algebra?