-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.yaml
19 lines (16 loc) · 1.88 KB
/
dataset.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Ultralytics YOLO 🚀, GPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco128 ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
train: ['dataset/Adience/train/',"dataset/AFAD/train/",'dataset/AffectNet/train/',"dataset/agedb/train/",'dataset/animalweb/train/',"dataset/CK/train/",'dataset/fairface/train/',"dataset/FER/train/",'dataset/FGNET/train/',"dataset/icartoon/train/",'dataset/imdb/train/',"dataset/megaage/train/",'dataset/megaageasian/train/',"dataset/RAFdb/train/",'dataset/TFWin/train/',"dataset/TFWout/train/",'dataset/uagd/train/',"dataset/UTK/train/",'dataset/wider/train/'] # train images (relative to 'path')
val: ['dataset/Adience/val/',"dataset/AFAD/val/",'dataset/AffectNet/val/',"dataset/agedb/val/",'dataset/animalweb/val/',"dataset/CK/val/","dataset/FER/val/",'dataset/FGNET/val/',"dataset/icartoon/val/",'dataset/imdb/val/',"dataset/megaage/val/",'dataset/megaageasian/val/',"dataset/RAFdb/val/",'dataset/TFWin/val/',"dataset/TFWout/val/",'dataset/uagd/val/','dataset/wider/val/'] # val images (relative to 'path')
test: ['dataset/Adience/test/',"dataset/AFAD/test/",'dataset/AffectNet/test/',"dataset/agedb/test/",'dataset/animalweb/test/',"dataset/CK/test/",'dataset/fairface/test/',"dataset/FER/test/",'dataset/FGNET/test/',"dataset/icartoon/test/",'dataset/imdb/test/',"dataset/megaage/test/",'dataset/megaageasian/test/',"dataset/RAFdb/test/",'dataset/TFWin/test/',"dataset/TFWout/test/",'dataset/uagd/test/',"dataset/UTK/test/",'dataset/wider/test/']# test images (optional)
kpt_shape: [5, 2]
nc: 3
# Classes
names: [ "human_face","animal_face","cartoon_face"]
flip_idx: [1, 0, 2, 4, 3]