-
Notifications
You must be signed in to change notification settings - Fork 0
/
etl.py
66 lines (49 loc) · 1.87 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import configparser
import psycopg2
from sql_queries import copy_table_queries, insert_table_queries
def load_staging_tables(cur, conn):
"""
1. Load data from json files that are located in AWS s3 buckets.
2. Copy that data into staging area in AWS redshift using the queries in `copy_table_queries` list.
INPUTS:
* cur: the cursor variable
* conn: the connection variable
"""
for query in copy_table_queries:
try:
cur.execute(query)
conn.commit()
except:
error_query = """
SELECT *
FROM stl_load_errors
WHERE tablename = 'staging_events';"""
cur.execute(error_query)
def insert_tables(cur, conn):
"""
1. Load data from staging tables.
2. insert that data into fact and dimensions tables in AWS redshift using the queries in `insert_table_queries` list.
INPUTS:
* cur: the cursor variable
* conn: the connection variable
"""
for query in insert_table_queries:
cur.execute(query)
conn.commit()
def main():
"""
- Establishes a config instance to read the configuration file to connect to AWS redshift cluster.
- Establishes connection with the sparkify database and gets cursor to it.
- Load data from json files that are located in AWS s3 buckets into staging area in AWS redshift.
- Load data from staging tables that are located in AWS redshift into fact and dimensions tables in AWS redshift.
- Finally, closes the connection.
"""
config = configparser.ConfigParser()
config.read('dwh.cfg')
conn = psycopg2.connect("host={} dbname={} user={} password={} port={}".format(*config['CLUSTER'].values()))
cur = conn.cursor()
load_staging_tables(cur, conn)
insert_tables(cur, conn)
conn.close()
if __name__ == "__main__":
main()