-
Notifications
You must be signed in to change notification settings - Fork 1
/
README.Rmd
92 lines (63 loc) · 3.78 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
output:
rmarkdown:: github_document
toc: true
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
# KiWi Reeesearch <img src="https://i.pinimg.com/originals/1b/db/46/1bdb46cf377ae1c06617d6b9bfc54793.png" align="right" height="80" />
_author_: **[Niccolò Salvini](https://niccolosalvini.netlify.app/)** , **[Jędrzej Dziedziul](https://www.linkedin.com/in/jedrzej-dziedziul/)**
_date_: `r Sys.Date()`
```{r global.options, include=FALSE}
knitr::opts_chunk$set(
warning = FALSE,
strip.white = TRUE, # if FALSE knitr will not remove white spaces at the beg or end
fig.path = "img/", # file path to the directory DESTINATION where knitr shall store the
fig.width=12, # the width for plots created by code chunk
fig.height=8, # the height for plots created by code chunk
cache = FALSE # if TRUE knitr will cache the results to reuse in future knits
)
knitr::knit_hooks$set(imgcenter = function(before, options, envir){ # to center image
if (before) { # add imgcenter = TRUE
htmltools::HTML("<p align='center'>") # to the chunk options
} else {
htmltools::HTML("</p>")
}
})
```
<br> <br>
## Deployment happens:
--> see the _slides_ **[HERE](https://kiwiresearch.netlify.com/#1)**
--> see the _Shiny APP_ **[HERE](https://jedrzejdziedziul.shinyapps.io/Housing/)**
## Description:
This tool has been designed to explore apartements in Milan next to your preferred location and compute a monthly rent price estimation given the spatial coordinates and the expected characteristics of the house, such as: rooms square meters. It is composed by a `Shiny` deployed from a bitbucket repo into [shinyapps.io](https://www.shinyapps.io/) and a set of `xaringan` slides deployed on [Netlify](https://www.netlify.com/). House data are scraped from [immobiliare](https://www.immobiliare.it/). Full explanation on the slides.
## Visuals:
```{r graphics, echo=FALSE, imgcenter = TRUE}
knitr::include_graphics("snapshot/screenshot 1.png")
```
```{r graphics2, echo=FALSE, imgcenter = TRUE}
knitr::include_graphics("snapshot/screenshot 2.png")
```
```{r graphics3, echo=FALSE, imgcenter = TRUE}
knitr::include_graphics("snapshot/screenshot 3.png")
```
```{r graphics4, echo=FALSE, imgcenter = TRUE}
knitr::include_graphics("snapshot/screenshot 4.png")
```
## Dependecies
```{r}
libs = c("rvest", "magrittr", "stringr", "httr",
"furrr", "plotly", "ggplot2", "DT", "readxl", "dplyr")
new.packages = libs[!(libs %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages)
```
## Usage:
the first tab-panel in the tab-set let you explore the available houses on the Milano house market, then once you have find the location of the apartement you right click it. This will assign a marker in `leaflet` object. This marker will be cached in the second tab panel, the *price prediciton calculator*, where you can also specify other characteristics of the desired house. An autoML model will give the estimation in the lower down part on the left.
In the right drop-down column you can discover other further options to select and the autoML will do its job in parallel.
## Project status:
this project is still `IN ITINERE`, but it has stopped since my university class is completed.
## Next features:
- implement auto-scraping functions
- choose boostrap .css style
- better UX
## License:
<a rel="license" href="http://creativecommons.org/licenses/by/4.0/"><img alt="Licenza Creative Commons" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />Quest'opera è distribuita con Licenza <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribuzione 4.0 Internazionale</a>.