-
Notifications
You must be signed in to change notification settings - Fork 38
/
citations.bib
80 lines (69 loc) · 2.95 KB
/
citations.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
@inproceedings{yuan2023libauc,
title={LibAUC: A Deep Learning Library for X-Risk Optimization},
author={Zhuoning Yuan and Dixian Zhu and Zi-Hao Qiu and Gang Li and Xuanhui Wang and Tianbao Yang},
booktitle={29th SIGKDD Conference on Knowledge Discovery and Data Mining},
year={2023}
}
@article{yang2022algorithmic,
title={Algorithmic Foundation of Deep X-Risk Optimization},
author={Yang, Tianbao},
journal={arXiv preprint arXiv:2206.00439},
year={2022}
}
@article{yang2022auc,
title={AUC Maximization in the Era of Big Data and AI: A Survey},
author={Yang, Tianbao and Ying, Yiming},
journal={arXiv preprint arXiv:2203.15046},
year={2022}
}
@article{yuan2022provable,
title={Provable Stochastic Optimization for Global Contrastive Learning: Small Batch Does Not Harm Performance},
author={Yuan, Zhuoning and Wu, Yuexin and Qiu, Zihao and Du, Xianzhi and Zhang, Lijun and Zhou, Denny and Yang, Tianbao},
booktitle={International Conference on Machine Learning},
year={2022},
organization={PMLR}
}
@article{qiu2022large,
title={Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence},
author={Qiu, Zi-Hao and Hu, Quanqi and Zhong, Yongjian and Zhang, Lijun and Yang, Tianbao},
booktitle={International Conference on Machine Learning},
year={2022},
organization={PMLR}
}
@article{zhu2022auc,
title={When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee},
author={Zhu, Dixian and Li, Gang and Wang, Bokun and Wu, Xiaodong and Yang, Tianbao},
booktitle={International Conference on Machine Learning},
year={2022},
organization={PMLR}
}
@inproceedings{yuan2021compositional,
title={Compositional Training for End-to-End Deep AUC Maximization},
author={Yuan, Zhuoning and Guo, Zhishuai and Chawla, Nitesh and Yang, Tianbao},
booktitle={International Conference on Learning Representations},
year={2022},
organization={PMLR}
}
@inproceedings{yuan2021federated,
title={Federated deep AUC maximization for hetergeneous data with a constant communication complexity},
author={Yuan, Zhuoning and Guo, Zhishuai and Xu, Yi and Ying, Yiming and Yang, Tianbao},
booktitle={International Conference on Machine Learning},
pages={12219--12229},
year={2021},
organization={PMLR}
}
@inproceedings{yuan2021large,
title={Large-scale robust deep auc maximization: A new surrogate loss and empirical studies on medical image classification},
author={Yuan, Zhuoning and Yan, Yan and Sonka, Milan and Yang, Tianbao},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={3040--3049},
year={2021}
}
@article{qi2021stochastic,
title={Stochastic optimization of areas under precision-recall curves with provable convergence},
author={Qi, Qi and Luo, Youzhi and Xu, Zhao and Ji, Shuiwang and Yang, Tianbao},
journal={Advances in Neural Information Processing Systems},
volume={34},
pages={1752--1765},
year={2021}
}