-
Notifications
You must be signed in to change notification settings - Fork 11
/
SIFT.py
203 lines (173 loc) · 7.68 KB
/
SIFT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import open3d as o3d
import open3d.cpu.pybind.utility
import numpy as np
import cv2
import matplotlib.pyplot as plt
from registration import match_ransac
from utils import get_boundary
########################################################################################################################
# Intrinsic parameter
########################################################################################################################
K = np.array(
[[597.522, 0.0, 312.885],
[0.0, 597.522, 239.870],
[0.0, 0.0, 1.0]], dtype=np.float64)
intrinsic = o3d.camera.PinholeCameraIntrinsic()
intrinsic.intrinsic_matrix = K
print(intrinsic.intrinsic_matrix)
########################################################################################################################
# Feature matching using SIFT algorithm
########################################################################################################################
# Find transformation matrix from corresponding points based on SIFT
def SIFT_Transformation(img1, img2, depth_img1, depth_img2, source_pcd, target_pcd, distance_ratio=0.6):
# Read image from path
imgL = cv2.imread(img1)
imgR = cv2.imread(img2)
depthL = np.array(o3d.io.read_image(depth_img1), np.float32)
depthR = np.array(o3d.io.read_image(depth_img2), np.float32)
# Clip depth value
threshold = 3000 # 3m limit
left_idx = np.where(depthL > threshold)
right_idx = np.where(depthR > threshold)
depthL[left_idx] = threshold
depthR[right_idx] = threshold
# Intel RealSense D415
depth_scaling_factor = 999.99
focal_length = 597.522 ## mm
img_center_x = 312.885
img_center_y = 239.870
# sift = cv2.xfeatures2d.SIFT_create() # OpenCV 4.5 미만 버젼 사용중일 시
sift = cv2.SIFT_create() # OpenCV 4.5 이상의 버전 사용중일 시
# Find keypoints and descriptors using SIFT
kp1, des1 = sift.detectAndCompute(imgL, None)
kp2, des2 = sift.detectAndCompute(imgR, None)
'''
# FLANN Parameters
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
# FLANN Matcher
flann = cv2.FlannBasedMatcher(index_params, search_params)
# Matching
matches = flann.knnMatch(des1, des2, k=2)
good = []
pts1 = []
pts2 = []
kp1_1 = []
kp2_1 = []
distance_ratio = 1.2
# Get Matched points under distance's threshold
for i, (m, n) in enumerate(matches[:10]):
if m.distance < distance_ratio * n.distance:
good.append([m])
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
kp1_1.append(kp1[m.queryIdx])
kp2_1.append(kp2[m.trainIdx])
'''
# BFMatcher
bf = cv2.BFMatcher(cv2.NORM_L1, crossCheck = False)
matches = bf.knnMatch(des1, des2, k=2)
# Need to draw only good matches, so create a mask
matchesMask = [[0, 0] for i in range(len(matches))]
good_matches = []
pts1 = []
pts2 = []
kp1_1 = []
kp2_1 = []
source_x_min, source_x_max, source_y_min, source_y_max = get_boundary(source_pcd)
target_x_min, target_x_max, target_y_min, target_y_max = get_boundary(target_pcd)
print(source_x_min, source_x_max, source_y_min, source_y_max)
print(target_x_min, target_x_max, target_y_min, target_y_max)
# depth map에서 위치의 min, max x, y 찾아서 마스킹해서 outlier 제거
for i, (m, n) in enumerate(matches):
if m.distance < distance_ratio * n.distance: # 0.6 for castard,
if (kp1[m.queryIdx].pt[0] >= source_x_min and kp1[m.queryIdx].pt[0] <= source_x_max):
if (kp1[m.queryIdx].pt[1] >= source_y_min and kp1[m.queryIdx].pt[1] <= source_y_max):
if (kp2[m.trainIdx].pt[0] >= target_x_min and kp2[m.trainIdx].pt[0] <= target_x_max):
if (kp2[m.trainIdx].pt[1] >= target_y_min and kp2[m.trainIdx].pt[1] <= target_y_max):
good_matches.append([m])
pts1.append(kp1[m.queryIdx].pt) # Source pcd
pts2.append(kp2[m.trainIdx].pt) # Target pcd
kp1_1.append(kp1[m.queryIdx])
kp2_1.append(kp2[m.trainIdx])
matchesMask[i] = [1, 0]
# Print number of matched feature points
print('Matched Num:', len(matches))
print('Good Matched Num:', len(good_matches))
print('Left Keypoint num:', len(kp1_1))
print('Right Keypoint num:', len(kp2_1))
img_matched = cv2.drawMatchesKnn(imgL, kp1, imgR, kp2, good_matches, None, matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0), flags=2)
cv2.imshow('img_matched', img_matched)
cv2.waitKey(0)
# Set array for keypoints
pts1 = np.array(pts1)
pts2 = np.array(pts2)
# Correspondence set
matches_index = np.array([])
for i in range(len(pts1)):
matches_index = np.append(matches_index, np.array([i, i]))
matches_index = matches_index.reshape(-1, 2)
correspondence_points = open3d.utility.Vector2iVector(matches_index)
pts1_3d = []
pts2_3d = []
for i in range(pts1.shape[0]):
# Image plane -> 픽셀값
u = np.float64(pts1[i][0])
v = np.float64(pts1[i][1])
# Normalized image plane -> (u, v, 1) * z = zu, zv, z
z = np.asarray(depthL, dtype=np.float64)[np.int32(v)][np.int32(u)] / depth_scaling_factor # in mm distance
x = (u - img_center_x) * z / focal_length
y = (v - img_center_y) * z / focal_length
pts1_3d = np.append(pts1_3d, np.array([x, y, z], dtype=np.float32))
for i in range(pts2.shape[0]):
# Image plane
u = np.float64(pts2[i][0])
v = np.float64(pts2[i][1])
# Normalized image plane
z = np.asarray(depthR, dtype=np.float64)[np.int32(v)][np.int32(u)] / depth_scaling_factor # in mm distance
x = (u - img_center_x) * z / focal_length
y = (v - img_center_y) * z / focal_length
pts2_3d = np.append(pts2_3d, np.array([x, y, z], dtype=np.float32))
pts1_3d = pts1_3d.reshape(-1, 3)
pts2_3d = pts2_3d.reshape(-1, 3)
print(pts1_3d.shape, pts2_3d.shape)
# Declare point cloud
pcd1 = o3d.geometry.PointCloud()
pcd2 = o3d.geometry.PointCloud()
# pc_points: array(Nx3), each row composed with x, y, z in the 3D coordinate
# pc_color: array(Nx3), each row composed with R G,B in the rage of 0 ~ 1
pc_points1 = np.array(pts1_3d, np.float32)
pc_points2 = np.array(pts2_3d, np.float32)
pc_color1 = np.array([], np.float32)
pc_color2 = np.array([], np.float32)
for i in range(pts1.shape[0]):
u = np.int32(pts1[i][0])
v = np.int32(pts1[i][1])
# pc_colors
pc_color1 = np.append(pc_color1, np.array(np.float32(imgL[v][u] / 255)))
pc_color1 = np.reshape(pc_color1, (-1, 3))
for i in range(pts2.shape[0]):
u = np.int32(pts2[i][0])
v = np.int32(pts2[i][1])
# pc_colors
pc_color2 = np.append(pc_color2, np.array(np.float32(imgR[v][u] / 255)))
pc_color2 = np.reshape(pc_color2, (-1, 3))
# add position and color to point cloud
pcd1.points = o3d.utility.Vector3dVector(pc_points1)
pcd1.colors = o3d.utility.Vector3dVector(pc_color1)
pcd2.points = o3d.utility.Vector3dVector(pc_points2)
pcd2.colors = o3d.utility.Vector3dVector(pc_color2)
'''
p2p = o3d.pipelines.registration.TransformationEstimationPointToPoint()
R_t = p2p.compute_transformation(
pcd1,
pcd2,
correspondence_points
)
'''
R_t = match_ransac(pts1_3d, pts2_3d, tol=0.1)
print("Transformation is:")
print(R_t)
return R_t, pcd1, pcd2, pts1, pts2, pts1_3d, pts2_3d