-
Notifications
You must be signed in to change notification settings - Fork 676
/
Overfitting
32 lines (27 loc) · 964 Bytes
/
Overfitting
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt
X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - np.random.rand(8))
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=100)
svr_lin = SVR(kernel='linear', C=1e3)
svr_rbf2 = SVR(kernel='rbf', C=1e3, gamma=.1)
y_rbf = svr_rbf.fit(X, y).predict(X)
y_lin = svr_lin.fit(X, y).predict(X)
y_poly = svr_rbf2.fit(X, y).predict(X)
lw = 3
plt.figure(figsize=(10,6))
plt.scatter(X, y, color='darkorange', label='data')
plt.hold('on')
plt.plot(X, y_rbf, color='navy', label='Overfitted')
plt.plot(X, y_lin, color='red', lw=lw, label='Underfitted')
plt.plot(X, y_poly, color='green', lw=lw, label='Best model')
plt.xlabel('data')
plt.ylabel('target')
plt.title('Support Vector Regression')
plt.legend()
plt.show()
print('Error RBF ovefitted:', np.mean(abs(y_rbf-y)))
print('Error RBF right:', np.mean(abs(y_poly-y)))
print('Error Linear:', np.mean(abs(y_lin-y)))