-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.tex
193 lines (178 loc) · 12.5 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{comment}
\usepackage{graphicx}
\usepackage{geometry}
\geometry{
a4paper,
total={170mm,257mm},
left=20mm,
top=20mm,
}
\title{\LARGE 3GPP LTE : Cramer Rao Lower Bound on TOA}
\author{Siddhant}
\date{May 2020}
\begin{document}
\maketitle
\section{\LARGE Position reference Sequence Based CRLB}
\subsection{CRLB Analysis : General Delay Estimation in AWGN}
Assume a signal $s(t)$ transmitted at time $0$ till $T_s$ from eNB and being received at UE from time $\tau_0$ till $T_s+\tau_0$, $T_s$ being symbol period. Received signal $x(t)$ can be expressed as follows:
$$x(t) = s(t - \tau_0) + w(t)$$
$w(t)$ is the White Gaussian Noise process with distribution $\sim \mathcal N (0, \sigma^2)$. Also, baseband signal $s(t)$ is band-limited to $f_{max}=B$.
Consider sampled version of $x(t)$ sampled at Nyquist Rate $2B = \frac{1}{\Delta}$. Sampled noise $w[n]$ will be independent. $x(n\Delta)$ will be non-zero only from time $\tau_0$ to $\tau_0 + T_s$. Mathematically, $x[n\Delta]$ can be expressed as follows:
$$x[n\Delta] = s[n\Delta - \tau_0] + w[n],$$
Assuming $\Delta$ to be small enough such that $\tau_0$ is some integral multiple of $\Delta$, $\frac{\tau_0}{\Delta} = n_0$.
Based on the final result of appendix $\mathbf{A}$, Cramer-Rao Lower Bound for delay $\tau_0$ can be given by the following expression:
$$
var(\hat{\tau_0}) \ge \frac{\sigma^2}{\sum^{n_0+N-1}_{n=n_0}(\frac{\partial s[n\Delta - \tau_0]}{\partial \tau_0 })^2} = \frac{\sigma^2}{\sum^{n_0+N-1}_{n=n_0}(\frac{\partial s(t)}{\partial t})| ^2 _{t=n\Delta - \tau_0}}
$$
\begin{equation} \label{eq1}
\LARGE
\boxed{var(\hat{\tau_0}) \ge \frac{\sigma^2}{\sum^{N-1}_{n=0}(\frac{\partial s(t)}{\partial t})| ^2 _{t=n\Delta}}}
\end{equation}
\\
The summation in the equ.(1) can be approximated to be integration since $\Delta$ is assumed to be very small and $n_0\Delta = \tau_0$.
\begin{equation} \label{eq2} \LARGE
var(\hat{\tau_0}) \ge \frac{\sigma^2}{\frac{1}{\Delta} \int^{T_s}_{0}(\frac{\partial s(t)}{\partial t})^2 \partial t} = \boxed{\frac{\Delta. \sigma^2}{\int^{T_s}_{0}(\frac{\partial s(t)}{\partial t})^2 \partial t}}
\end{equation}
\begin{equation} \label{eq3} \LARGE
\boxed{var(\hat{\tau_0}) \ge \frac{N_0/2}{\int^{T_s}_{0}(\frac{\partial s(t)}{\partial t})^2 \partial t}}
\end{equation}
Observe that signal energy $\mathcal E = \int^{T_s}_{0}|s(t)|^2\partial t$ and define a quantity $\bar{F}^2$ as follows:
$$\bar{F}^2 = \frac{\int^{T_s}_{0}(\frac{\partial s(t)}{\partial t})^2 \partial t}{\int^{T_s}_{0}|s(t)|^2\partial t}$$
\\
Now, we can write equation.2 using $\mathcal E$ and $\bar{F}^2$ as follows:
\begin{equation} \label{eq4} \LARGE
\boxed{var(\hat{\tau_0}) \ge \frac{1}{\frac{\mathcal{E}}{N_0/2}\cdot \bar{F}^2} = \frac{1}{\mathbf{SNR} \cdot \bar{F}^2}}
\end{equation}
\\
This quantity $\bar{F}^2$ can be understood as Mean-Squared Bandwidth \footnote{Area under the curve $f^2$ weighted by transmitted signal's PSD $|S(f)|^2$ over $f \in (-\infty, \infty)$ will give squared bandwidth of $s(t)$. And, this squared bandwidth is divided by total signal power.} of the transmitted signal $s(t)$. This is also called Gabor Bandwidth. Using Fourier Transform's properties $\bar{F}^2$ can be written as follows:
\begin{equation} \label{eq5}
\LARGE
\boxed{\bar{F}^2 = \frac{\int^{\infty}_{-\infty}(2\pi f)^2|S(f)|^2\partial f}{\int^{\infty}_{-\infty}|S(f)|^2\partial f}}
\end{equation}
\\
\subsection{CRLB Derivation : PRS Based OFDM System}
A transmitted signal $s[n]$ can be written as inverse discrete fourier transform summation as follows:
$$s[n] = \sqrt{\frac{2C}{N}} \sum_{k \in N_a}d_k exp(j2\pi n k/N)$$
$N$ is the number of tones i.e. $12N_{RB}$, $N_a$ is the number of active tones on which the PRS symbols are loaded, $d_k$ are Gold Sequenced QAM symbols on $k^{th}$ tone, and $C$ is the total power in one OFDM Symbol of symbol period $T_s$, where $T_s = \frac{1}{\Delta f}$. $C$ can be expressed in terms of total signal energy and symbol period as follows:
$$C = \frac{\sum^{N-1}_{k=0}|X[k\Delta f]|^2}{T_s}$$
And, hence One Symbol Energy $\mathcal E_s$ can be defined as: $\mathcal E_s = C T_s$. Also, we note that $X[k \Delta f] = d_k$.
\\
Based on the analysis of CRLB for delay in previous section, we can write the CRLB for this PRS based OFDM system as follows:
\begin{equation} \label{eq6} \large
var(\hat{\tau}) \ge \frac{\sigma^2}{\{\sum^{N-1}_{k=0}|X[k\Delta f]|^2\}\cdot \bar{F}^2}
\end{equation}
\\
For any OFDM System, Mean-Squared Bandwidth ($\bar{F}^2$) can be approximated by the following expression:
\begin{equation} \label{eq7} \large
\bar{F}^2 = \frac{\sum^{N-1}_{k=0}(2\pi k\Delta f)^2|X[k\Delta f]|^2}{\sum^{N-1}_{k=0}|X[k\Delta f]|^2} = \frac{\sum^{N-1}_{k=0}(2\pi k\Delta f)^2|d_k|^2}{\sum^{N-1}_{k=0}|d_k|^2}
\end{equation}
\\
If we can assume that $d_k$ will be one of the QAM symbols picked from the set: $\{ \frac{1}{\sqrt{2}} (1+j) , \frac{1}{\sqrt{2}} (1-j), \frac{1}{\sqrt{2}} (-1+j), \frac{1}{\sqrt{2}} (-1-j) \}$, then $|d_k|^2 = 1$. Also approximate $\sum^{N-1}_{k=0}k^2 \approx \frac{2N^3}{6}$ for large $N$. Hence expression for $\bar{F}^2$ can be simplified to the following:
\\
\begin{equation} \label{eq8} \LARGE
\bar{F}^2 = \frac{(2\pi \Delta f)^2 \sum^{N-1}_{k=0}k^2}{N} \approx \frac{4\pi^2}{3}(N\Delta f)^2
\end{equation}
\\
Using equ.(2) and equ.(8), we can write the CRLB for TOA for PRS based OFDM system as follows:
\\
$$var(\hat{\tau}) \ge \frac{\sigma^2/(N\Delta f)}{\frac{4\pi^2}{3}(N\Delta f)^2 \cdot \sum^{N-1}_{k=0}|X[k\Delta f]|^2}$$
\\
$$ var(\hat{\tau}) \ge \frac{\sigma^2/(N\Delta f)}{\frac{4\pi^2}{3}(N\Delta f)^2 \cdot \sum^{N-1}_{k=0}|d_k|^2} = \frac{1}{\frac{4\pi^2}{3}(N\Delta f)^2 \cdot \frac{\sum_{k}|d_k|^2}{\sigma^2/(N\Delta f)}}$$
\\
Notice that the quantity $\frac{\sum_{k}|d_k|^2}{\sigma^2/(N\Delta f)}$ is the Post-Correlation SNR. Because, when we correlate the received symbols with the Gold Sequence of PRS, what we will have as aggregate signal energy, is : $\sum_{k}|d_k|^2$, and we know that noise power in the total OFDM Bandwidth $2B = 12N_{RB}\Delta f$ is nothing but $\sigma^2 = N_0/2.2B = N_0B$, where $N_0/2$ is double sided noise PSD. Hence, $\sigma^2/(N\Delta f)$ is Noise-Energy. So, we can write $\frac{\sum_{k}|d_k|^2}{\sigma^2/(N\Delta f)} = {SNR}_{PostCorr}$. We can also interpret the quantity, $\frac{\sum_{k}|d_k|^2}{1/(N\Delta f)}$ as post-correlation signal power and $\sigma^2 = N_0/2$ is the Noise Power, and hence, $\frac{\sum_{k}|d_k|^2}{\sigma^2/(N\Delta f)} = {SNR}_{PostCorr}$ . The final CRLB expression for this PRS(Pilot) based delay estimation in OFDM Based 4GLTE or 5GNR system can be given by the following:
\\
\begin{equation} \label{eq9}
\LARGE
\boxed{CRLB(\hat{\tau}) = var(\hat{\tau}) \ge \frac{1}{\frac{4\pi^2}{3} \ (N\Delta f)^2 \ {SNR}_{PostCorr}} }
\end{equation}
\begin{figure}[h]
\caption{Cramer-Rao Lower Bound and 5G PRS in AWGN Channel}
\centering
\includegraphics[scale=0.5]{CRLB_toa}
\end{figure}
\begin{comment}
\newpage
\section{Alternative : CRLB for OFDM Based Systems}
\subsection{Derivation: Fisher Information}
$s(t)$ is the OFDM wave being transmitted by Reference Cell. $\tau$ is the time delay and channel is assumed to be $1$. Received Samples can be given by the following :
\\
$$y[n] = s(nT_s - \tau) + z[n],$$where z[n] are iid AWGN noise samples with mean $0$ and variance $\sigma^2$.
Joint Conditional PDF of $\mathbf y|\tau$ can be given by the following:
$$p(\mathbf y|\tau) = \frac{1}{(\pi \sigma^2)^N} .exp(-\frac{1}{\sigma^2}\sum^{N}_{n=1}(s(n T_s - \tau) - y[n])^2)$$
\\
And log likelihood will become :
\\
$$ln(p(\mathbf y|\tau)) = -N ln(\pi \sigma^2) -\frac{1}{\sigma^2}\sum^{N}_{n=1}(s(nT_s - \tau) - y[n])^2$$
\\
Fisher Information $\mathbf J(\tau)$ will then be given by:
\\
$$\mathbf{J}(\tau) = \mathbf E\{ - \mathbf{\frac{d^2}{d^2\tau}}ln((p(\mathbf y|\tau)) \}$$
\\
Simplify the above to get :
\\
$$\mathbf{J}(\tau) = \frac{2}{sigma^2}\sum^{N}_{n=1}\mathbf{\frac{d}{d\tau}}s(n T_s - \tau).\mathbf{\frac{d}{d\tau}}s^*(n T_s - \tau)$$
\\
Since, $s(t) = \frac{1}{\sqrt{N}}\sum^{\frac{N}{2} - 1}_{k=-\frac{N}{2}}S[k]e^{j2\pi k\Delta F t}$, where $\Delta F$ is subcarrier spacing of OFDM system. Hence, $s(n T_s - \tau) = \frac{1}{\sqrt{N}}\sum^{\frac{N}{2} - 1}_{k=-\frac{N}{2}}S[k]e^{j2\pi k\Delta F (n T_s - \tau)}$. Substitute this $s(n T_s - \tau)$ in the above equation to get :
\\
$$\mathbf{J}(\tau) = \frac{2}{N.\sigma^2} \sum^{N}_{n=1}\{\frac{d}{d\tau}\sum^{\frac{N}{2} - 1}_{k=-\frac{N}{2}}S[k]e^{j2\pi k\Delta F (n T_s - \tau)}\}.\{\frac{d}{d\tau}\sum^{\frac{N}{2} - 1}_{l=-\frac{N}{2}}S[k]e^{j2\pi l\Delta F (n T_s - \tau)}\}$$
\\
After carrying out differentiation and taking all terms which are not running in the sum out of the summation, we get the following :
$$\mathbf{J}(\tau) = \frac{2}{N\sigma^2}(-j2\pi \Delta F).(j2\pi \Delta F)\sum^{N}_{n=1} \{\sum^{\frac{N}{2} - 1}_{k=-\frac{N}{2}}k S[k]e^{j2\pi \Delta F k n T_s}.\sum^{\frac{N}{2} - 1}_{l=-\frac{N}{2}}l S*[l]e^{-j2\pi \Delta F l n T_s}\}$$
\\
Use orthogonality of Fourier Basis and assume $S[k] = 1$, to get the following:
\\
$$\mathbf{J}(\tau) = \frac{8\pi^2 \Delta F^2}{N\sigma^2} \sum^{N}_{n=1} \sum^{\frac{N}{2} - 1}_{k=-\frac{N}{2}}N k^2 = \frac{8\pi^2 \Delta F^2}{\sigma^2} \sum^{N}_{n=1} \sum^{\frac{N}{2} - 1}_{k=-\frac{N}{2}}k^2 = \frac{8\pi^2 \Delta F^2 N}{\sigma^2}\sum^{\frac{N}{2} - 1}_{k=-\frac{N}{2}}k^2$$
\\
Computing $\sum^{\frac{N}{2} - 1}_{k=-\frac{N}{2}}k^2$ by substituting $m=k+\frac{N}{2}$, gives the following :
\\
$$\sum^{N-1}_{m=0}(m-\frac{N}{2})^2 = \frac{N^3}{12} + \frac{N}{6} \approx \frac{N^3}{12}$$
\\
Finally, plug this approximated sum into Fisher Information sum to get the following :
\\
$$\mathbf{J}(\tau) = \frac{8\pi^2 \Delta F^2 N}{\sigma^2}\sum^{\frac{N}{2} - 1}_{k=-\frac{N}{2}}k^2 \approx \frac{8\pi^2 \Delta F^2 N}{\sigma^2} \frac{N^3}{12},$$
\\
We know that Bandwidth of OFDM is $\Delta F.N$, hence $(\Delta F . N)^2$ can be considered as Squared Bandwidth. Also We have considered $|S[k]|^2 = 1$, which will mean Pre-Correlation Signal Power is 1. If instead Pre-Correlation Signal Power was a constant $P$, then Post-Correlation signal power would have been $N.P$. And then the Fisher Information expression becomes :
\\
$$\mathbf{J}(\tau) = \frac{2\pi^2 (\Delta F.N)^2}{3}. \frac{N^2 P}{\sigma^2} = N. \frac{2\pi^2}{3} (\Delta F.N)^2 SNR_{corr}$$
\\
\subsection{CRLB : Expression}
As, CRLB on uncertainty of the estimated parameter $\tau$ is lower bounded by reciprocal of Fisher Information, CRLB can be given by following:
$$var(\hat{\tau}) \ge \frac{1}{\mathbf J(\tau)},$$
$$or, var(\hat{\tau}) \ge \frac{3}{2N\pi^2}\frac{1}{(\Delta F.N)^2}.\frac{1}{SNR_{corr}}$$
\end{comment}
\newpage
\appendix
\section{CRLB : Signal($s[n;\theta]$) in White Gaussian Noise}
Assume the observations $x[n]$ to be:
\\
$$x[n] = s[n;\theta] + w[n],$$
\\
$w[n]$ are iid noise samples distributed $\sim \mathcal{N}(0, \sigma^2)$. Joint PDF of $N$ independent observations $p(\mathbf x; \theta)$ and log-likelihood function will be given by:
\\
$$p(\mathbf x; \theta) = \frac{1}{(\sqrt{2\pi \sigma^2})^N} \cdot exp(-\frac{1}{2\sigma^2}\sum^{N-1}_{n=0}(x[n] - s[n;\theta])^2)$$
$$\ln{p(\mathbf x;\theta)} = -\frac{N}{2}\ln{2\pi \sigma^2} - \frac{1}{2\sigma^2}\sum^{N-1}_{n=0}(x[n] - s[n;\theta])^2$$
\\
Differentiating with respect to $\theta$, we get the following:
\\
$$\frac{\partial \ln{p(\mathbf x; \theta)}}{\partial \theta} = \frac{1}{\sigma^2}\sum^{N-1}_{n=0}\frac{\partial s[n;\theta]}{\partial \theta}(x[n] - s[n;\theta])$$
\\
It can be verified that the regularity condition($\mathcal{E}\{ \frac{\partial \ln{p(\mathbf x; \theta)}}{\partial \theta} \} = 0, \forall \theta$), is satisfied. Differentiating again with respect to $\theta$, we get the following:
$$\frac{\partial ^2 \ln{p(\mathbf x; \theta)}}{\partial ^2 \theta} = \frac{1}{\sigma^2}\sum^{N-1}_{n=0}(\frac{\partial ^2s[n;\theta]}{\partial ^2\theta}(x[n] - s[n;\theta]) - (\frac{\partial s[n;\theta]}{\partial \theta})^2)$$
This leads to Fisher information $\mathbf I (\theta) = -\mathbf E \{ \frac{\partial ^2\ln{p(\mathbf x; \theta)}}{\partial ^2\theta} \}$:
\\
$$\mathbf I(\theta) = \frac{1}{\sigma^2}\sum^{N-1}_{n=0}(\frac{\partial s[n;\theta]}{\partial \theta} )^2 $$
\\
Cramer Rao Lower bound on estimation of unknown parameter $\theta$ is given by the reciprocal of Fisher information $\mathbf{I}(\theta)$, so in this case of general signal parametrized by unknown component $\theta$ is given as follows:
\\
\begin{equation} \label{eqA}
\LARGE
\boxed {var(\hat{\theta}) \ge \frac{\sigma^2}{ \sum^{N-1}_{n=0} (\frac{\partial s[n;\theta]}{\partial \theta} )^2}}
\end{equation}
\newpage
\nocite{*}
\bibliography{myRef}
\bibliographystyle{ieeetr}
\end{document}