-
Notifications
You must be signed in to change notification settings - Fork 59
/
main.py
55 lines (43 loc) · 1.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
from parser import get_args
import cv2
import numpy as np
from makeup import Makeup
from PIL import Image
def color_makeup(A_txt, B_txt, alpha):
color_txt = model.makeup(A_txt, B_txt)
color = model.render_texture(color_txt)
color = model.blend_imgs(model.face, color * 255, alpha=alpha)
return color
def pattern_makeup(A_txt, B_txt, render_texture=False):
mask = model.get_mask(B_txt)
mask = (mask > 0.0001).astype("uint8")
pattern_txt = A_txt * (1 - mask)[:, :, np.newaxis] + B_txt * mask[:, :, np.newaxis]
pattern = model.render_texture(pattern_txt)
pattern = model.blend_imgs(model.face, pattern, alpha=1)
return pattern
if __name__ == "__main__":
args = get_args()
model = Makeup(args)
imgA = np.array(Image.open(args.input))
imgB = np.array(Image.open(args.style))
imgB = cv2.resize(imgB, (256, 256))
model.prn_process(imgA)
A_txt = model.get_texture()
B_txt = model.prn_process_target(imgB)
if args.color_only:
output = color_makeup(A_txt, B_txt, args.alpha)
elif args.pattern_only:
output = pattern_makeup(A_txt, B_txt)
else:
color_txt = model.makeup(A_txt, B_txt) * 255
mask = model.get_mask(B_txt)
mask = (mask > 0.001).astype("uint8")
new_txt = color_txt * (1 - mask)[:, :, np.newaxis] + B_txt * mask[:, :, np.newaxis]
output = model.render_texture(new_txt)
output = model.blend_imgs(model.face, output, alpha=1)
x2, y2, x1, y1 = model.location_to_crop()
output = np.concatenate([imgB[x2:], model.face[x2:], output[x2:]], axis=1)
save_path = os.path.join(args.savedir, "result.png")
Image.fromarray((output).astype("uint8")).save(save_path)
print("Completed 👍 Please check result in: {}".format(save_path))