-
Notifications
You must be signed in to change notification settings - Fork 0
/
2linearRegression.r
32 lines (25 loc) · 1.5 KB
/
2linearRegression.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#Perform linear regressing on the builtin cars dataset for the expression
dist = Intercept + (β ∗ speed)
head(cars)
scatter.smooth(x=cars$speed, y=cars$dist, main="Dist ~ Speed")
par(mfrow=c(1, 2))
boxplot(cars$speed, main="Speed", sub=paste("Outlier rows: ", boxplot.stats(cars$speed)$out))
boxplot(cars$dist, main="Distance", sub=paste("Outlier rows: ", boxplot.stats(cars$dist)$out))
#Density plot – Check if the response variable is close to normality
library(e1071)
par(mfrow=c(1, 2))
plot(density(cars$speed), main="Density Plot: Speed", ylab="Frequency", sub=paste("Skewness:", round(e1071::skewness(cars$speed), 2)))
polygon(density(cars$speed), col="red")
plot(density(cars$dist), main="Density Plot: Distance", ylab="Frequency", sub=paste("Skewness:", round(e1071::skewness(cars$dist), 2)))
polygon(density(cars$dist), col="red")
cor(cars$speed, cars$dist)
linearMod <- lm(dist ~ speed, data=cars)
print(linearMod)
summary(linearMod)
# 👋 Hi, I’m @aarushinair - Aarushi Nair (she/her/ella)
# 👀 I’m a Computer Science Engineering Student
# 💞️ I’m looking to collaborate on #java, #python, #R, #applicationdevelopment
# 🌱 #GirlsWhoCode #WomenInTech #WomenInIT #WomenInSTEM #CyberSecurity #QuantumComputing #BlockChain #AI #ML
# 📫 How to reach me: https://www.linkedin.com/in/aarushinair/
# 👩🏫 YouTube Channel - Code with Aarushi : https://www.youtube.com/channel/UCKj5T1ELHCmkGKujkpqtl7Q
# 🙋 Follow me on Twitter: https://twitter.com/aarushinair_