https://leetcode-cn.com/problems/patching-array/
给定一个已排序的正整数数组 nums,和一个正整数 n 。从 [1, n] 区间内选取任意个数字补充到 nums 中,使得 [1, n] 区间内的任何数字都可以用 nums 中某几个数字的和来表示。请输出满足上述要求的最少需要补充的数字个数。
示例 1:
输入: nums = [1,3], n = 6
输出: 1
解释:
根据 nums 里现有的组合 [1], [3], [1,3],可以得出 1, 3, 4。
现在如果我们将 2 添加到 nums 中, 组合变为: [1], [2], [3], [1,3], [2,3], [1,2,3]。
其和可以表示数字 1, 2, 3, 4, 5, 6,能够覆盖 [1, 6] 区间里所有的数。
所以我们最少需要添加一个数字。
示例 2:
输入: nums = [1,5,10], n = 20
输出: 2
解释: 我们需要添加 [2, 4]。
示例 3:
输入: nums = [1,2,2], n = 5
输出: 0
- 贪心
- 前缀和
- 暂无
这道题核心点正如标题所言: 贪心 + 维护端点信息。
贪心的思想这里不多说了,思路和官方题解是一样的。
先不考虑需要增加数字的情况, 这里给了几个例子方便大家理解。
左侧是 nums 数组, 右侧是 nums 可以覆盖的区间 [start, end] (注意是左右都闭合)。当然如果你写出别的形式,比如左闭右开,那么代码要做一些调整。
[1] -> [1,1] [1,2] -> [1,3] [1,2,3] -> [1,6] [1,2,3,4] -> [1,10]
可以看出,可以覆盖的区间,总是 [1, x] ,其中 x 为 nums 的前缀和。
接下来,我们考虑有些数字缺失导致无法覆盖的情况。
算法:
- 初始化覆盖区间为 [0, 0] 表示啥都没覆盖,目标区间是 [1, n]
- 如果数组当前数字无法达到前缀和,那么需要补充数字
- 更新区间 [1, 前缀和]
- 维护端点信息,并用前缀和更新
代码变量说明:
- furthest 表示区间右端点
- i 表示当前遍历到的数组索引
- ans 是需要返回的答案
class Solution:
def minPatches(self, nums: List[int], n: int) -> int:
furthest = i = ans = 0
while furthest < n:
# 可覆盖到,直接用前缀和更新区间
if i < len(nums) and nums[i] <= furthest + 1:
furthest += nums[i] # [1, furthest] -> [1, furthest + nums[i]]
i += 1
else:
# 不可覆盖到,增加一个数 furthest + 1,并用前缀和更新区间
furthest = 2 * furthest + 1 # [1, furthest] -> [1, furthest + furthest + 1]
ans += 1
return ans
如果你的区间信息是左闭右开的,代码可以这么写:
class Solution:
def minPatches(self, nums: List[int], n: int) -> int:
furthest, i, ans = 1, 0, 0
# 结束条件也要相应改变
while furthest <= n:
if i < len(nums) and nums[i] <= furthest:
furthest += nums[i] # [1, furthest) -> [1, furthest + nums[i])
i += 1
else:
furthest = 2 * furthest # [1, furthest) -> [1, furthest + furthest)
ans += 1
return ans
复杂度分析
- 时间复杂度:$$O(N)$$。
- 空间复杂度:$$O(1)$$。
大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 37K star 啦。 大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。