-
Notifications
You must be signed in to change notification settings - Fork 640
/
tf_visualization.py
91 lines (76 loc) · 4 KB
/
tf_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import tensorflow as tf
import numpy as np
from tensorflow.keras.datasets import mnist
STORE_PATH = 'C:\\Users\\Andy\\TensorFlowBook\\TensorBoard'
def get_batch(x_data, y_data, batch_size):
idxs = np.random.randint(0, len(y_data), batch_size)
return x_data[idxs,:,:], y_data[idxs]
def nn_example():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# Python optimisation variables
learning_rate = 0.5
epochs = 20
batch_size = 100
with tf.name_scope("inputs"):
# declare the training data placeholders
x = tf.placeholder(tf.float32, [None, 28, 28])
# reshape input x - for 28 x 28 pixels = 784
x_rs = tf.reshape(x, [-1, 784])
# scale the input data (maximum is 255.0, minimum is 0.0)
x_sc = tf.div(x_rs, 255.0)
# now declare the output data placeholder - 10 digits
y = tf.placeholder(tf.int64, [None, 1])
# convert the y data to one hot values
y_one_hot = tf.reshape(tf.one_hot(y, 10), [-1, 10])
with tf.name_scope("layer_1"):
# now declare the weights connecting the input to the hidden layer
W1 = tf.Variable(tf.random_normal([784, 300], stddev=0.01), name='W')
b1 = tf.Variable(tf.random_normal([300]), name='b')
hidden_logits = tf.add(tf.matmul(x_sc, W1), b1)
hidden_out = tf.nn.sigmoid(hidden_logits)
tf.summary.histogram("Hidden_logits", hidden_logits)
tf.summary.histogram("Hidden_output", hidden_out)
with tf.name_scope("layer_2"):
# and the weights connecting the hidden layer to the output layer
W2 = tf.Variable(tf.random_normal([300, 10], stddev=0.05), name='W')
b2 = tf.Variable(tf.random_normal([10]), name='b')
logits = tf.add(tf.matmul(hidden_out, W2), b2)
# now let's define the cost function which we are going to train the model on
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_one_hot,
logits=logits))
# add an optimiser
optimiser = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cross_entropy)
# finally setup the initialisation operator
init_op = tf.global_variables_initializer()
# define an accuracy assessment operation
with tf.name_scope("accuracy"):
correct_prediction = tf.equal(tf.argmax(y_one_hot, 1), tf.argmax(logits, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.variable_scope("getimages"):
correct_inputs = tf.boolean_mask(x_sc, correct_prediction)
image_summary_true = tf.summary.image('correct_images', tf.reshape(correct_inputs, (-1, 28, 28, 1)),
max_outputs=5)
incorrect_inputs = tf.boolean_mask(x_sc, tf.logical_not(correct_prediction))
image_summary_false = tf.summary.image('incorrect_images', tf.reshape(incorrect_inputs, (-1, 28, 28, 1)),
max_outputs=5)
# add a summary to store the accuracy
tf.summary.scalar('acc_summary', accuracy)
merged = tf.summary.merge_all()
# start the session
with tf.Session() as sess:
sess.run(init_op)
writer = tf.summary.FileWriter(STORE_PATH, sess.graph)
# initialise the variables
total_batch = int(len(y_train) / batch_size)
for epoch in range(epochs):
avg_cost = 0
for i in range(total_batch):
batch_x, batch_y = get_batch(x_train, y_train, batch_size=batch_size)
_, c = sess.run([optimiser, cross_entropy], feed_dict={x: batch_x, y: batch_y.reshape(-1, 1)})
avg_cost += c / total_batch
acc, summary = sess.run([accuracy, merged], feed_dict={x: x_test, y: y_test.reshape(-1, 1)})
print("Epoch: {}, cost={:.3f}, test set accuracy={:.3f}%".format(epoch + 1, avg_cost, acc*100))
writer.add_summary(summary, epoch)
print("\nTraining complete!")
if __name__ == "__main__":
nn_example()