-
Notifications
You must be signed in to change notification settings - Fork 1
/
compute_ckc_responses.m
335 lines (231 loc) · 11.3 KB
/
compute_ckc_responses.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
function [ckc,pval] = compute_ckc_responses(EEG, Fs, target_freq, ChNames, eloc)
% A script for detection of corticokinematic coherence (CKC) responses from CSD signals (EEG).
% As used in the article (2022): "Cortical networks show characteristic recruitment patterns after somatosensory stimulation by pneumatically evoked repetitive hand movements in newborn infants"
% Authors: E Ahtola, S Leikos, A Tuiskula, L Haataja, E Smeds, H Piitulainen, V Jousmäki, A Tokariev, S Vanhatalo
%
% Corticokinematic coherence (CKC) reflects coupling between cortical EEG and peripheral kinematic signals.
% This script can be used to detect CKC using inter-trial phase coherence (ITC) that yields a measure of phase-locked
% synchronisation between repeated EEG trials in relation to the stimulus events (e.g. Tallon-Baudry et al. 1996; Delorme and Makeig 2004).
%
% Here CKC is defined as an average of ITC t–f decomposition values from the response frequency band (3.56 Hz) excluding the first and last 200 ms of the epoch length.
% CKC/ITC values are tranformed into p-values using equation p = exp(sqrt(1+4*N+4*(N^2-(N*itc).^2))-(1+2*N)), where N is the trial count.
%
% Function produces two graphs:
% 1) T-f figure plate that shows ITC values of each channel as a time
% frequency plot. CKC is an average of ITC values at the response frequency (marked as a grey rectangle).
% 2) Optional: Topoplot figure that visualizes CKC values projected on a 2D headmap.
% CKC values are masked by a threshold of p<0.01 (FDR corrected), i.e.
% highlights the statistically significant response components.
%
% INPUT:
% EEG EEG data as a matrix (channels x data x trials)
% Fs Sampling frequency (Hz)
% target_freq Response frequency, we used first harmonic of the stimulation frequency (3.56 Hz)
% ChNames EEG channel labels as a cell structure
% eloc Data structure for EEG electrode locations as in EEGLAB (see example data). used in visualization (topoplot)
%
% OUTPUT:
% ckc Channel-specific CKC magnitude
% pval p-values corresponding to the CKC response
%
% EXAMPLE DATA: ckc_csd_trial_data.mat
% EEG EEG trials from a single CKC recording (right hand stimulation). Data is prefiltered (0.5-30Hz) and in current source density (CSD) format (Perrin et al. 1989).
% Fs 250 Hz
% target_freq 3.5714 Hz
% ChNames Channel labels (19)
% eloc Electrode positions
%
% Test by runnning commands:
% load ckc_csd_trial_data.mat;
% [ckc,pval] = compute_ckc_responses(EEG, Fs, target_freq, ChNames, eloc);
%
% Script requires following external functions (included):
% fdr_bh.m. (David Groppe 2022). Retrieved from MATLAB Central File Exchange (https://www.mathworks.com/matlabcentral/fileexchange/27418-fdr_bh).
%
% Optional script for 2D topographic plot of CKC detection results (Not Included)
% topoplot.m. (Delorme and Makeig 2004) requires freely available EEGLAB toolbox (https://sccn.ucsd.edu/eeglab/index.php).
%
% Eero Ahtola 3.5.2022
% eero.ahtola@hus.fi
%
p_limit = 0.01; %Alpha value, e.g. threshold for statistically significant responses
fdr = 1; %Use false discovery rate (FDR) correction for multiple comparisons (1=yes, 0=no)? Uses the procedure by Benjamini and Hochberg (1995).
draw_tflim_edges = 1; %Draw edges of flim and tlim values to t-f graphs? 1=yes, 0=no
create_topoplot = 0; %Create 2D topographic plot of the results (1=yes, 0=no)? Requires installation of EEGLAB toolbox.
%Set trial start and end times (trigger at 0 s):
trial_start = -0.2; % in s
trial_end = 0.9; % in s
%Set time and frequency limits for average CKC value ouput
tlim = [0 trial_end-0.2]; %exclude trial edges
flim = target_freq+[-0.2 0.2]; %peak f @ ~3.56 Hz (Compute CKC from single frequency bin)
[Nch,~,~] = size(EEG);
[~,~,Ntrials] = size(EEG);
trial_t = trial_start:1/Fs:trial_end-(1/Fs);
T_trial = length(trial_t)/Fs;
pnts = int64(length(trial_t));
disp(['Epochs: N=' num2str(Ntrials) ', T=' num2str(T_trial), ', Ttotal=' num2str(Ntrials*T_trial)]);
%Detrend trials
EEG_mod=zeros(size(EEG));
for nch=1:Nch
for ntrial=1:Ntrials
epoch1 = EEG(nch,:,ntrial);
ep_mod = detrend(epoch1, 'constant');
EEG_mod(nch,:,ntrial) = ep_mod;
end
end
EEG = EEG_mod;
clear EEG_mod;
%T-f tranformation parameters for frequency range
num_freqs = 40;
min_freq = 0.5;
max_freq = 12;
%Adjust freq bins optimally to match the target frequency
[freqs, min_freq] = match_frex(min_freq, max_freq, num_freqs, target_freq);
% Wavelet parameters
wave_time = -6:1/Fs:6; %Create time vector for wavelets (-x s -> +x s)
half_wave_size = (length(wave_time)-1)/2;
cycle_range = [4 10];
wavecycles = logspace(log10(cycle_range(1)),log10(cycle_range(end)),num_freqs);
% Format FFT variables
nWave = length(wave_time);
nWave = int64(nWave);
nData = pnts*Ntrials;
nData = int64(nData);
nConv = nWave+nData-1;
%Loop over all EEG channels
ckc = zeros(Nch,1);
pval = zeros(Nch,1);
for nch=1:Nch
disp(['Processing ch ' num2str(nch) '/' num2str(Nch) ' : ' ChNames{nch}]);
% FFT of data (doesn't change on freq iterations)
dataX = fft(reshape(EEG(nch,:,:),1,nData),double(nConv));
% initialize output time-frequency data
tf = zeros(num_freqs,pnts);
tf_rp = zeros(num_freqs,pnts); %Rayleigh test pvalue
% loop over frequencies
for fi = 1:num_freqs
% create Morlet wavelet
s = wavecycles(fi)/(2*pi*freqs(fi));
wavelet = exp(2*1i*pi*freqs(fi).*wave_time) .* exp(-wave_time.^2./(2*s^2));
%get wavelet FFT
waveletX = fft(wavelet,double(nConv));
% run convolution
as = ifft(waveletX.*dataX,double(nConv));
as = as(half_wave_size+1:end-half_wave_size);
as = reshape(as,pnts,Ntrials);
% compute ITC (abs mean of phase over trials)
tf(fi,:) = abs(mean(exp(1i*angle(as)),2));
%Convert itc values to Rayeigh z-scores and p-values
[~, pval_pnt] = itc2rayleigh(tf(fi,:), Ntrials);
tf_rp(fi,:) = pval_pnt;
end
pick_avg_t = [trial_t>=tlim(1) & trial_t<tlim(2)];
pick_avg_f = [freqs>=flim(1) & freqs<flim(2)];
ckc(nch) = mean(mean(tf(pick_avg_f,pick_avg_t),2));
pval(nch) = mean(mean(tf_rp(pick_avg_f,pick_avg_t),2));
%Plot ITC t-f graphs as a subplot for figure plate
if nch==1 %Create fig plate in first run
figure; clf; hold on; set(gcf,'Color','w'); box off;
set(gcf,'position',[20 20 1400 850]);
%Use 10-20 montage layout:
scalp_mtg = {'','Fp1','','Fp2','';...
'F7','F3','Fz','F4','F8';...
'T3','C3','Cz','C4','T4';...
'T5','P3','Pz','P4','T6';...
'','O1','Oz','O2',''};
[fpositions,fsize] = subplot_tfpos_for_scalp(ChNames,scalp_mtg);
end
subplot(fsize(1),fsize(2),fpositions(nch)); hold on;
contourf(trial_t,freqs,tf,40,'linecolor','none')
set(gca,'clim',[0 .6],'ydir','normal','xlim',[trial_start trial_end])
titletext = [ChNames{nch} ', CKC=' num2str(ckc(nch),2)];
title(titletext,'Interpreter','none');
xlabel('Time (s)');
ylabel('Frequency (Hz)');
colormap(gcf,'jet');
caxis([0 0.6]);
cb=colorbar;
set(cb,'FontSize',9);
if draw_tflim_edges>0 %draw tlim and flim edges
rlims = rectangle('Position',[tlim(1),flim(1),diff(tlim),diff(flim)],'EdgeColor',0.6*[1 1 1],'LineWidth',1);
end
set(gca, ...
'TickDir' , 'out' , ...
'TickLength' , [.01 .01] , ...
'YMinorTick' , 'off' , ...
'LineWidth' , 1 );
set(gca,'FontName','Helvetica','FontSize',9);
set(gca,'layer','top');
end
% FDR correction for multiple comparisons
if fdr>0 %Use FDR correction for p-values:
[h, crit_p, ~, ~]=fdr_bh(pval,p_limit,'pdep','no'); %Apply FDR correction. fdr_bh.m available on the Mathworks FileExchange
sign_mask = double(h);
else %FDR correction not used:
sign_mask = double(pval <= p_limit & pval > 0); %Create binary mask
end
% Optional: Visualize CKC results as a topoplot
% Requires topoplot.m from EEGLAB toolbox and locs information for the electrode setup (eloc).
if create_topoplot>0
figure; hold on;
topoplot(ckc,eloc,'electrodes','on','pmask',sign_mask); %no labels. ks. topoplot.m line 1177
set(gca, 'CLim', [0, 0.6]);
set(gcf,'Color','w');
%Add colorbar
c=colorbar;
cbticks=[0: 0.2: 0.6];
set(c, 'YTick', cbticks);
set(c,'fontsize',12);
end
end
% Internal functions
function [frex_new, new_min_freq] = match_frex(min_freq, max_freq, num_frex, target)
%Help function that creates a logspaced vector from min and max freqencies (num_frex elements).
%Min freq is adjusted so that target frequency is matched exactly at certain element.
%Eero Ahtola 2019
%Try default:
frex = logspace(log10(min_freq),log10(max_freq),num_frex);
%Adjust nearest to target
[~, idx] = min(abs(frex-target));
frex1 = logspace(log10(target),log10(max_freq),num_frex-idx+1); %logspaced from target to max
d1 = diff(log10(frex1(1:2))); %Linear difference
new_min_freq = 10^(log10(target)-d1*(idx-1)); %Min freq adjusted so that target is matched at idx
frex_new = logspace(log10(new_min_freq),log10(max_freq),num_frex); %New frex with new min freq
end
function [fpos,fsize] = subplot_tfpos_for_scalp(ChNames,scalp_mtg)
% Help function that yields location definitions for t-f subplots
% based on given channel labels and requested scalp montage visualization.
%
% E Ahtola 2021
% 1×19 cell array
% Columns 1 through 10
% {'Fp1'} {'Fp2'} {'F3'} {'F4'} {'C3'} {'C4'} {'P3'} {'P4'} {'O1'} {'O2'}
% Columns 11 through 19
% {'F7'} {'F8'} {'T3'} {'T4'} {'T5'} {'T6'} {'Fz'} {'Cz'} {'Pz'}
% scalp_mtg = {'','Fp1','','Fp2','';...
% 'F7','F3','Fz','F4','F8';...
% 'T3','C3','Cz','C4','T4';...
% 'T5','P3','Pz','P4','T6';...
% '','O1','','O2',''};
fsize=size(scalp_mtg);
nums=reshape([1:fsize(1)*fsize(2)],fsize(1),fsize(2))';
fpos=[];
for n=1:length(ChNames)
pos1 = nums(find(ismember(scalp_mtg,ChNames{n})));
if ~isempty(pos1)
fpos(n) = pos1;
else
disp('Electrode definition (fpos) not found!');
ChNames{n}
end
end
end
function [rz, rp] = itc2rayleigh(itc,N)
%Convert itc values to Rayeigh z scores and p-values
% N = number of trials
% Rayleigh's Z-score: rz = N*(itc.^2), valid approximation if N is high
% Rayleigh's p-value (coarse): rp = exp(-N*(itc.^2), valid approximation if N is high
% Rayleigh's p-value (accurate): rp = exp(sqrt(1+4*N+4*(N^2-(N*itc).^2))-(1+2*N))
rz = N*(itc.^2);
rp = exp(sqrt(1+4*N+4*(N^2-(N*itc).^2))-(1+2*N));
end