-
Notifications
You must be signed in to change notification settings - Fork 0
/
4.BACK PROPAGATION ALGORITHM
47 lines (47 loc) · 1.63 KB
/
4.BACK PROPAGATION ALGORITHM
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
y = np.array(([92], [86], [89]), dtype=float)
X = X/np.amax(X,axis=0) # maximum of X array longitudinally
y = y/100
#Sigmoid Function
def sigmoid (x):
return 1/(1 + np.exp(-x))
#Derivative of Sigmoid Function
def derivatives_sigmoid(x):
return x * (1 - x)
#Variable initialization
epoch=7000 #Setting training iterations
lr=0.1 #Setting learning rate
inputlayer_neurons = 2 #number of features in data set
hiddenlayer_neurons = 3 #number of hidden layers neurons
output_neurons = 1 #number of neurons at output layer
#weight and bias initialization
wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh=np.random.uniform(size=(1,hiddenlayer_neurons))
wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))
bout=np.random.uniform(size=(1,output_neurons))
#draws a random range of numbers uniformly of dim x*y
for i in range(epoch):
#Forward Propogation
hinp1=np.dot(X,wh)
hinp=hinp1 + bh
hlayer_act = sigmoid(hinp)
outinp1=np.dot(hlayer_act,wout)
outinp= outinp1+ bout
output = sigmoid(outinp)
#Backpropagation
EO = y-output
outgrad = derivatives_sigmoid(output)
d_output = EO* outgrad
EH = d_output.dot(wout.T)
hiddengrad = derivatives_sigmoid(hlayer_act)#how much hidden layer wts
contributed to error
d_hiddenlayer = EH * hiddengrad
wout += hlayer_act.T.dot(d_output) *lr# dotproduct of nextlayererror and
currentlayerop
# bout += np.sum(d_output, axis=0,keepdims=True) *lr
wh += X.T.dot(d_hiddenlayer) *lr
#bh += np.sum(d_hiddenlayer, axis=0,keepdims=True) *lr
print("Input: \n" + str(X))
print("Actual Output: \n" + str(y))
print("Predicted Output: \n" ,output)