This repository has been archived by the owner on May 27, 2024. It is now read-only.
forked from udacity/FCND-Motion-Planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
planning_utils.py
297 lines (264 loc) · 10.7 KB
/
planning_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import math
from enum import Enum
from queue import PriorityQueue
import numpy as np
def create_grid(data, drone_altitude, safety_distance):
"""
Returns a grid representation of a 2D configuration space
based on given obstacle data, drone altitude and safety distance
arguments.
"""
# minimum and maximum north coordinates
north_min = np.floor(np.min(data[:, 0] - data[:, 3]))
north_max = np.ceil(np.max(data[:, 0] + data[:, 3]))
# minimum and maximum east coordinates
east_min = np.floor(np.min(data[:, 1] - data[:, 4]))
east_max = np.ceil(np.max(data[:, 1] + data[:, 4]))
# given the minimum and maximum coordinates we can
# calculate the size of the grid.
north_size = int(np.ceil(north_max - north_min))
east_size = int(np.ceil(east_max - east_min))
# Initialize an empty grid
grid = np.zeros((north_size, east_size))
# Populate the grid with obstacles
for i in range(data.shape[0]):
north, east, alt, d_north, d_east, d_alt = data[i, :]
if alt + d_alt + safety_distance > drone_altitude:
obstacle = [
int(np.clip(north - d_north - safety_distance - north_min, 0, north_size - 1)),
int(np.clip(north + d_north + safety_distance - north_min, 0, north_size - 1)),
int(np.clip(east - d_east - safety_distance - east_min, 0, east_size - 1)),
int(np.clip(east + d_east + safety_distance - east_min, 0, east_size - 1)),
]
grid[obstacle[0]:obstacle[1] + 1, obstacle[2]:obstacle[3] + 1] = 1
return grid, int(north_min), int(east_min)
# Assume all actions cost the same.
class Action(Enum):
"""
An action is represented by a 3 element tuple.
The first 2 values are the delta of the action relative
to the current grid position. The third and final value
is the cost of performing the action.
"""
WEST = (0, -1, 1)
EAST = (0, 1, 1)
NORTH = (-1, 0, 1)
SOUTH = (1, 0, 1)
@property
def cost(self):
return self.value[2]
@property
def delta(self):
return (self.value[0], self.value[1])
def valid_actions(grid, current_node):
"""
Returns a list of valid actions given a grid and current node.
"""
valid_actions = list(Action)
n, m = grid.shape[0] - 1, grid.shape[1] - 1
x, y = current_node
# check if the node is off the grid or
# it's an obstacle
if x - 1 < 0 or grid[x - 1, y] == 1:
valid_actions.remove(Action.NORTH)
if x + 1 > n or grid[x + 1, y] == 1:
valid_actions.remove(Action.SOUTH)
if y - 1 < 0 or grid[x, y - 1] == 1:
valid_actions.remove(Action.WEST)
if y + 1 > m or grid[x, y + 1] == 1:
valid_actions.remove(Action.EAST)
return valid_actions
def a_star(grid, h, start, goal):
path = []
path_cost = 0
queue = PriorityQueue()
queue.put((0, start))
visited = set(start)
branch = {}
found = False
while not queue.empty():
item = queue.get()
current_node = item[1]
if current_node == start:
current_cost = 0.0
else:
current_cost = branch[current_node][0]
if current_node == goal:
found = True
break
else:
for action in valid_actions(grid, current_node):
# get the tuple representation
da = action.delta
next_node = (current_node[0] + da[0], current_node[1] + da[1])
branch_cost = current_cost + action.cost
queue_cost = branch_cost + h(next_node, goal)
if next_node not in visited:
visited.add(next_node)
branch[next_node] = (branch_cost, current_node, action)
queue.put((queue_cost, next_node))
if found:
# retrace steps
n = goal
path_cost = branch[n][0]
path.append(goal)
while branch[n][1] != start:
path.append(branch[n][1])
n = branch[n][1]
path.append(branch[n][1])
print('Found a path from {} to {} with cost: {}'.format(start, goal, path_cost))
else:
print('**********************')
print('Failed to find a path!')
print('**********************')
return path[::-1], path_cost
def iterative_astar(grid, h, start, goal):
"""
Implement the iterative deepening A* algorithm by continuously looking
for goal node using dfs approach with increasing depth limit: 0, 1, ...
until find the goal node.
"""
def dfs(grid, h, current_node, start, goal, depth_limit, visited, branch):
"""
Implement the dfs algorithm for the depth of depth_limit
"""
path = []
path_cost = 0
found = False
found_in_sub = False
if current_node == start:
current_cost = 0.0
else:
current_cost = branch[current_node][0]
# Cut the branch with f(current, goal) > depth_limit
if current_cost + h(current_node, goal) > depth_limit:
found = False
# Check found when current_cost == depth_limit
elif current_cost == depth_limit:
found = (current_node == goal)
# Check whether current_node == goal
elif current_node == goal:
found = True
# Check whether currnt_node != goal
else:
# Check the child node
for action in valid_actions(grid, current_node):
da = action.delta
next_node = (current_node[0] + da[0], current_node[1] + da[1])
branch_cost = current_cost + action.cost
# if the node is not visited, then add it to visited, and repeat
if next_node not in visited:
visited.add(next_node)
branch[next_node] = (branch_cost, current_node, action)
path, path_cost, found = dfs(grid,
h,
next_node,
start,
goal,
depth_limit,
visited,
branch)
if found:
# prevent repeatedly print the result
found_in_sub = True
break
if found and not found_in_sub:
# retrace steps
n = goal
path_cost = branch[n][0]
path.append(goal)
while branch[n][1] != start:
path.append(branch[n][1])
n = branch[n][1]
path.append(branch[n][1])
return path, path_cost, found
# Iterative deepening process
found = False
current_limit = 0
# iterative the deepening process until the goal is found
while not found:
visited = set(start)
branch = {}
path, path_cost, found = dfs(grid, h, start, start, goal, current_limit, visited, branch)
if found:
print('Found a path from {} to {} with cost: {}'.format(start, goal, path_cost))
print("Found a path at current limit: ", current_limit)
return path[::-1], path_cost
# Otherwise, Failed to find the goal at current depth limit
current_limit = current_limit + 1
def a_start_to_traverse_three_fixed_point(grid, h, start, goal, node_1, node_2, node_3):
"""
Implement the a_star to find the shortest path from start to goal and traverse
the three nodes
"""
def a_star_modified(grid, h, start, goal):
path = []
path_cost = 0
queue = PriorityQueue()
queue.put((0, start))
visited = set(start)
branch = {}
found = False
while not queue.empty():
item = queue.get()
current_node = item[1]
if current_node == start:
current_cost = 0.0
else:
current_cost = branch[current_node][0]
if current_node == goal:
found = True
break
else:
for action in valid_actions(grid, current_node):
# get the tuple representation
da = action.delta
next_node = (current_node[0] + da[0], current_node[1] + da[1])
branch_cost = current_cost + action.cost
queue_cost = branch_cost + h(next_node, goal)
if next_node not in visited:
visited.add(next_node)
branch[next_node] = (branch_cost, current_node, action)
queue.put((queue_cost, next_node))
if found:
# retrace steps
n = goal
path_cost = branch[n][0]
path.append(goal)
while branch[n][1] != start:
path.append(branch[n][1])
n = branch[n][1]
path.append(branch[n][1])
return path[::-1], path_cost, found
path = []
path_cost = math.inf
node_list = [node_1, node_2, node_3]
for first_node in node_list:
cp_node_list = node_list
cp_node_list.remove(first_node)
for second_node in cp_node_list:
cp_node_list.remove(second_node)
third_node = cp_node_list[0]
tmp_path0, tmp_path_cost0, tmp_found_0 = a_star_modified(grid, h, start, first_node)
tmp_path1, tmp_path_cost1, tmp_found_1 = a_star_modified(grid, h, first_node, second_node)
tmp_path2, tmp_path_cost2, tmp_found_2 = a_star_modified(grid, h, second_node, third_node)
tmp_path3, tmp_path_cost3, tmp_found_3 = a_star_modified(grid, h, third_node, goal)
if tmp_found_0 and tmp_found_1 and tmp_found_2 and tmp_found_3:
tmp_path = tmp_path0 + tmp_path1 + tmp_path2 + tmp_path3
tmp_path_cost = tmp_path_cost0 + tmp_path_cost1 + tmp_path_cost2 + tmp_path_cost3
if tmp_path_cost < path_cost:
path = tmp_path
path_cost = tmp_path_cost
return path, path_cost
def heuristic_manhattan(position, goal_position):
"""
Implement the heuristic function by calculating the Manhattan Distance
"""
return abs(position[0] - goal_position[0]) + abs(position[1] - goal_position[1])
def heuristic_chebyshev(position, goal_position):
"""
Implement the heuristic function by calculating the Chebyshev Distance
"""
return max(abs(position[0] - goal_position[0]), abs(position[1] - goal_position[1]))
def heuristic(position, goal_position):
return np.linalg.norm(np.array(position) - np.array(goal_position))