forked from pranavbudhwant/snail
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classes.h
421 lines (385 loc) · 11.4 KB
/
classes.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
template <typename T>
class DataFrame{
//Functions to be written:
/*
DataFrame() - constructor - creates an empty DataFrame
DataFrame(DataFrame) - copy constructor
DataFrame(int) - creates a 1D DataFrame with all 0 of given size
DataFrame(int, int) - creates a 2D DataFrame with all 0 of given size
DataFrame(2D Array) - creates a 2D DataFrame with the given 2D Array
DataFrame(1D Array) - creates a 1D DataFrame with the given 1D Array
set(rowIndex, colIndex, value) - sets the value at rowIndex, colIndex to given value
size() - returns a one dimensional DataFrame of 2 elements [number of rows, number of columns]
rowLen() - returns the number of rows
colLen() - returns the number of columns
T at(int, int) - returns the value at given indices
rowAt(int) - returns a one dimensional DataFrame of the row at given index
colAt(int) - returns a one dimensional DataFrame of the column at given index
subFrame(int, int) - returns a DataFrame starting from the given indices till the last indices
subFrame(int, int, int, int) - returns a DataFrame starting and ending at given indices
operator = - copies the given DataFrame to calling DataFrame
trimTopRow() - removes the row at index 0
trimBottomRow() - removes the row at index num_rows - 1
trimRow(int rowIndex) - removes the row with index rowIndex
trimFirstCol() - removes the column with index 0
trimLastCol() - removes the column with index num_columns - 1
trimCol(int colIndex) - removes the column with index colIndex
insertRow(array/DataFrame, index) - inserts the given row at the given index
insertCol(array/DataFrame, index) - inserts the given column at the given index
appendRow(array/DataFrame) - appends the given array/DataFrame to the end of the calling DataFrame
appendCol(array/DataFrame) - appends the given array/DataFrame to the end of the calling DataFrame
transpose() - returns the transpose of calling DataFrame
Operations on numerical dataframes:
operator + - returns a sum of DataFrames
operator -
operator *
If size is incompatible, throws an exception and program is terminated
normalize() - normalizes the entire DataFrame - subtract the mean and divide by standard deviation/range(max - min)
normalizeRowWise() - normalizes the entire DataFrame row wise, i.e. each row is normalized individually
normalizeColWise() - normalizes the entire DataFrame column wise, i.e. each column is normalized individually
normalizeRow(int) - normalizes the given row
normalizeCol(int) - normalizes the given column
<< - displaying the dataframe
*/
size_t num_rows, num_columns;
T **frame;
public:
DataFrame(){
frame = NULL;
num_rows = 0;
num_columns = 0;
}
DataFrame(size_t num_columns){
this->num_columns = num_columns;
num_rows = 1;
frame = new T*[num_rows];
for(size_t i=0; i<num_rows; i++)
frame[i] = new T[num_columns];
}
DataFrame(size_t num_rows, size_t num_columns){
this->num_columns = num_columns;
this->num_rows = num_rows;
frame = new T*[num_rows];
for(size_t i=0; i<num_rows; i++)
frame[i] = new T[num_columns];
}
DataFrame(T *array, size_t size){
this->num_columns = size;
num_rows = 1;
frame = new T*[num_rows];
for(size_t i=0; i<num_rows; i++)
frame[i] = new T[num_columns];
for(int i=0; i<size; i++)
frame[0][i] = array[i];
}
DataFrame(T **array, size_t rows, size_t columns){
this->num_columns = columns;
this->num_rows = rows;
frame = new T*[num_rows];
for(size_t i=0; i<num_rows; i++)
frame[i] = new T[num_columns];
for(int i=0; i<num_rows; i++)
for(int j=0; j<num_columns; j++)
frame[i][j] = array[i][j];
}
DataFrame(const DataFrame &d){
num_rows = d.num_rows;
num_columns = d.num_columns;
frame = new T*[num_rows];
for(size_t i=0; i<num_rows; i++)
frame[i] = new T[num_columns];
for(int i=0; i<num_rows; i++){
for(int j=0; j<num_columns; j++)
frame[i][j] = d.frame[i][j];
}
}
void set(int rowIndex, int columnIndex, T value){
frame[rowIndex][columnIndex] = value;
}
DataFrame<int> size(){
DataFrame<int> s(2);
s.set(0, 0, num_rows);
s.set(0, 1, num_columns);
return s;
}
size_t rowLength(){
return num_rows;
}
size_t columnLength(){
return num_columns;
}
T valueAt(int rowIndex, int columnIndex){
return frame[rowIndex][columnIndex];
}
T max(){
T max = frame[0][0];
for(int i=0; i<num_rows; i++)
for(int j=0; j<num_columns; j++)
if(frame[i][j] > max) max = frame[i][j];
return max;
}
T min(){
T min = frame[0][0];
for(int i=0; i<num_rows; i++)
for(int j=0; j<num_columns; j++)
if(frame[i][j] < min) min = frame[i][j];
return min;
}
DataFrame<T> rowAt(int rowIndex){
DataFrame<T> row(frame[rowIndex], num_columns);
return row;
}
DataFrame<T> columnAt(int columnIndex){
DataFrame<T> column(num_rows, 1);
for(int i=0; i<num_rows; i++)
column.set(i,0,frame[i][columnIndex]);
return column;
}
DataFrame<T> subFrame(int rowIndex, int columnIndex){
DataFrame<T> subframe( num_rows - rowIndex, num_columns - columnIndex );
for(int i=rowIndex, m=0; i<num_rows; i++, m++){
for(int j=columnIndex, n=0; j<num_columns; j++, n++)
subframe.set(m, n, frame[i][j]);
}
return subframe;
}
DataFrame<T> subFrame(int rowIndexBeg, int columnIndexBeg, int rowIndexEnd, int columnIndexEnd){
DataFrame<T> subframe( rowIndexEnd - rowIndexBeg + 1, columnIndexEnd - columnIndexBeg + 1);
for(int i=rowIndexBeg, m=0; i<rowIndexEnd; i++, m++){
for(int j=columnIndexBeg, n=0; j<columnIndexEnd; j++, n++)
subframe.set(m, n, frame[i][j]);
}
return subframe;
}
void trimTopRow(){
if(num_rows >= 1){
for(int i=0; i+1<num_rows; i++){
for(int j=0; j<num_columns; j++){
frame[i][j] = frame[i+1][j];
}
}
delete frame[num_rows - 1];
num_rows--;
if(num_rows == 0) num_columns = 0;
}
}
void trimBottomRow(){
if(num_rows >= 1){
delete frame[num_rows - 1];
num_rows--;
if(num_rows == 0) num_columns = 0;
}
}
void trimRow(int rowIndex){
if(num_rows >= 1){
if(rowIndex >= 0 && rowIndex < num_rows){
for(int i=rowIndex; i+1<num_rows; i++){
for(int j=0; j<num_columns; j++){
frame[i][j] = frame[i+1][j];
}
}
delete frame[num_rows - 1];
num_rows--;
if(num_rows == 0) num_columns = 0;
}
}
}
void trimFirstColumn(){
if(num_columns >= 1){
for(int j=0; j+1<num_columns; j++){
for(int i=0; i<num_rows; i++){
frame[i][j] = frame[i][j+1];
}
}
num_columns--;
if(num_columns == 0) num_rows = 0;
}
}
void trimLastColumn(){
if(num_columns >= 1){
num_columns--;
if(num_columns == 0) num_rows = 0;
}
}
void trimColumn(int columnIndex){
if(num_columns >= 1){
if(columnIndex >= 0 && columnIndex < num_columns){
for(int j=columnIndex; j+1<num_columns; j++){
for(int i=0; i<num_rows; i++){
frame[i][j] = frame[i][j+1];
}
}
num_columns--;
if(num_columns == 0) num_rows = 0;
}
}
}
DataFrame<T> transpose(){
DataFrame<T> d(num_columns, num_rows);
for(int i=0; i<num_rows; i++)
for(int j=0; j<num_columns; j++)
d.frame[j][i] = frame[i][j];
return d;
}
void normalize(){
double mean = 0;
T max = frame[0][0], min = frame[0][0];
for(int i=0; i<num_rows; i++){
for(int j=0; j<num_columns; j++){
mean += frame[i][j];
if(frame[i][j] > max) max = frame[i][j];
if(frame[i][j] < min) min = frame[i][j];
}
}
mean /= num_rows*num_columns;
double range = max - min;
if(range==0) range = 1;
for(int i=0; i<num_rows; i++){
for(int j=0; j<num_columns; j++){
frame[i][j] = double(double(frame[i][j]) - mean)/range;
}
}
}
void normalizeRowWise(){
for(int i=0; i<num_rows; i++){
double mean = 0;
T max, min = frame[i][0];
for(int j=0; j<num_columns; j++){
mean += frame[i][j];
if(frame[i][j] > max) max = frame[i][j];
if(frame[i][j] < min) min = frame[i][j];
}
mean /= num_columns;
double range = max - min;
if(range==0) range = 1;
for(int j=0; j<num_columns; j++){
frame[i][j] = double(double(frame[i][j]) - mean)/range;
}
}
}
void normalizeColumnWise(){
for(int j=0; j<num_columns; j++){
double mean = 0;
T max, min = frame[0][j];
for(int i=0; i<num_rows; i++){
mean += frame[i][j];
if(frame[i][j] > max) max = frame[i][j];
if(frame[i][j] < min) min = frame[i][j];
}
mean /= num_rows;
double range = max - min;
if(range==0) range = 1;
for(int i=0; i<num_rows; i++){
frame[i][j] = double(double(frame[i][j]) - mean)/range;
}
}
}
void normalizeRow(int rowIndex){
double mean = 0;
T max, min = frame[rowIndex][0];
for(int j=0; j<num_columns; j++){
mean += frame[rowIndex][j];
if(frame[rowIndex][j] > max) max = frame[rowIndex][j];
if(frame[rowIndex][j] < min) min = frame[rowIndex][j];
}
mean /= num_columns;
double range = max - min;
if(range==0) range = 1;
for(int j=0; j<num_columns; j++){
frame[rowIndex][j] = double(double(frame[rowIndex][j]) - mean)/range;
}
}
void normalizeColumn(int columnIndex){
double mean = 0;
T max, min = frame[0][columnIndex];
for(int i=0; i<num_rows; i++){
mean += frame[i][columnIndex];
if(frame[i][columnIndex] > max) max = frame[i][columnIndex];
if(frame[i][columnIndex] < min) min = frame[i][columnIndex];
}
mean /= num_rows;
double range = max - min;
if(range==0) range = 1;
for(int i=0; i<num_rows; i++){
frame[i][columnIndex] = double(double(frame[i][columnIndex]) - mean)/range;
}
}
/* DataFrame<double> normalize(){
DataFrame<double> norm(num_rows, num_columns);
double mean = 0;
T max = frame[0][0], min = frame[0][0];
for(int i=0; i<num_rows; i++){
for(int j=0; j<num_columns; j++){
mean += frame[i][j];
if(frame[i][j] > max) max = frame[i][j];
if(frame[i][j] < min) min = frame[i][j];
}
}
mean /= num_rows*num_columns;
double range = max - min;
for(int i=0; i<num_rows; i++){
for(int j=0; j<num_columns; j++){
norm.set(i, j, double(double(frame[i][j]) - mean)/range);
}
}
return norm;
}
*/
DataFrame operator + (const DataFrame &d){
DataFrame sum(num_rows, num_columns);
if(num_rows == d.num_rows && num_columns == d.num_columns){
for(int i=0; i<num_rows; i++){
for(int j=0; j<num_columns; j++)
sum.set(i, j, frame[i][j] + d.frame[i][j]);
}
}
return sum;
}
DataFrame operator - (const DataFrame &d){
DataFrame diff(num_rows, num_columns);
if(num_rows == d.num_rows && num_columns == d.num_columns){
for(int i=0; i<num_rows; i++){
for(int j=0; j<num_columns; j++)
diff.set(i, j, frame[i][j] - d.frame[i][j]);
}
}
return diff;
}
DataFrame operator * (const DataFrame &d){
DataFrame product(num_rows, d.num_columns);
if(num_columns == d.num_rows){
for(int i=0; i<num_rows; i++){
for(int j=0; j<d.num_columns; j++){
product.frame[i][j]=0;
for(int k=0; k<num_columns; k++)
product.frame[i][j] += frame[i][k]*d.frame[k][j];
}
}
}
return product;
}
void operator = (const DataFrame &d){
num_rows = d.num_rows;
num_columns = d.num_columns;
frame = new T*[num_rows];
for(size_t i=0; i<num_rows; i++)
frame[i] = new T[num_columns];
for(int i=0; i<num_rows; i++){
for(int j=0; j<num_columns; j++)
frame[i][j] = d.frame[i][j];
}
}
friend ostream& operator << (ostream &out, const DataFrame &d){
for(int i=0; i<d.num_rows; i++){
for(int j=0; j<d.num_columns; j++)
out<<d.frame[i][j]<<" ";
out<<endl;
}
return out;
}
};
class IO{/*
csv_read() - reads the given csv file and returns a DataFrame object
csv_write() - writes the given DataFrame to the given file
*/
};