-
Notifications
You must be signed in to change notification settings - Fork 36
/
d2l-0.10.1.py
1358 lines (1199 loc) · 57.1 KB
/
d2l-0.10.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is generated automatically through:
# d2lbook build lib
# Don't edit it directly
import sys
d2l = sys.modules[__name__]
# Defined in file: ./chapter_preface/preface.md
from IPython import display
import collections
import os
import sys
import numpy as np
import math
from matplotlib import pyplot as plt
from mxnet import nd, autograd, gluon, init, context, image
from mxnet.gluon import nn, rnn
import random
import re
import time
import tarfile
import zipfile
# Defined in file: ./chapter_crashcourse/probability.md
def use_svg_display():
"""Use the svg format to display plot in jupyter."""
display.set_matplotlib_formats('svg')
# Defined in file: ./chapter_crashcourse/probability.md
def set_figsize(figsize=(3.5, 2.5)):
"""Change the default figure size"""
use_svg_display()
plt.rcParams['figure.figsize'] = figsize
# Defined in file: ./chapter_crashcourse/naive-bayes.md
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
"""Plot a list of images."""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
ax.imshow(img.asnumpy())
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
# Defined in file: ./chapter_linear-networks/linear-regression.md
class Timer(object):
"""Record multiple running times."""
def __init__(self):
self.times = []
self.start()
def start(self):
"""Start the timer"""
self.start_time = time.time()
def stop(self):
"""Stop the timer and record the time in a list"""
self.times.append(time.time() - self.start_time)
return self.times[-1]
def avg(self):
"""Return the average time"""
return sum(self.times)/len(self.times)
def sum(self):
"""Return the sum of time"""
return sum(self.times)
def cumsum(self):
"""Return the accumuated times"""
return np.array(self.times).cumsum().tolist()
# Defined in file: ./chapter_linear-networks/linear-regression.md
def plot(X, Y=None, xlabel=None, ylabel=None, legend=[], xlim=None,
ylim=None, xscale='linear', yscale='linear', fmts=None,
figsize=(3.5, 2.5), axes=None):
"""Plot multiple lines"""
d2l.set_figsize(figsize)
axes = axes if axes else d2l.plt.gca()
if isinstance(X, nd.NDArray): X = X.asnumpy()
if isinstance(Y, nd.NDArray): Y = Y.asnumpy()
if not hasattr(X[0], "__len__"): X = [X]
if Y is None: X, Y = [[]]*len(X), X
if not hasattr(Y[0], "__len__"): Y = [Y]
if len(X) != len(Y): X = X * len(Y)
if not fmts: fmts = ['-']*len(X)
axes.cla()
for x, y, fmt in zip(X, Y, fmts):
if isinstance(x, nd.NDArray): x = x.asnumpy()
if isinstance(y, nd.NDArray): y = y.asnumpy()
if len(x):
axes.plot(x, y, fmt)
else:
axes.plot(y, fmt)
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
# Defined in file: ./chapter_linear-networks/linear-regression.md
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""A utility function to set matplotlib axes"""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend: axes.legend(legend)
axes.grid()
# Defined in file: ./chapter_linear-networks/linear-regression-scratch.md
def synthetic_data(w, b, num_examples):
"""generate y = X w + b + noise"""
X = nd.random.normal(scale=1, shape=(num_examples, len(w)))
y = nd.dot(X, w) + b
y += nd.random.normal(scale=0.01, shape=y.shape)
return X, y
# Defined in file: ./chapter_linear-networks/linear-regression-scratch.md
def linreg(X, w, b):
return nd.dot(X, w) + b
# Defined in file: ./chapter_linear-networks/linear-regression-scratch.md
def squared_loss(y_hat, y):
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
# Defined in file: ./chapter_linear-networks/linear-regression-scratch.md
def sgd(params, lr, batch_size):
for param in params:
param[:] = param - lr * param.grad / batch_size
# Defined in file: ./chapter_linear-networks/linear-regression-gluon.md
def load_array(data_arrays, batch_size, is_train=True):
"""Construct a Gluon data loader"""
dataset = gluon.data.ArrayDataset(*data_arrays)
return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train)
# Defined in file: ./chapter_linear-networks/fashion-mnist.md
def get_fashion_mnist_labels(labels):
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
# Defined in file: ./chapter_linear-networks/fashion-mnist.md
def get_dataloader_workers(num_workers=4):
# 0 means no additional process is used to speed up the reading of data.
if sys.platform.startswith('win'):
return 0
else:
return num_workers
# Defined in file: ./chapter_linear-networks/fashion-mnist.md
def load_data_fashion_mnist(batch_size, resize=None):
"""Download the Fashion-MNIST dataset and then load into memory."""
dataset = gluon.data.vision
trans = [dataset.transforms.Resize(resize)] if resize else []
trans.append(dataset.transforms.ToTensor())
trans = dataset.transforms.Compose(trans)
mnist_train = dataset.FashionMNIST(train=True).transform_first(trans)
mnist_test = dataset.FashionMNIST(train=False).transform_first(trans)
return (gluon.data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers()),
gluon.data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=get_dataloader_workers()))
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
def accuracy(y_hat, y):
return (y_hat.argmax(axis=1) == y.astype('float32')).sum().asscalar()
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
def evaluate_accuracy(net, data_iter):
metric = Accumulator(2) # num_corrected_examples, num_examples
for X, y in data_iter:
y = y.astype('float32')
metric.add(accuracy(net(X), y), y.size)
return metric[0] / metric[1]
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
class Accumulator(object):
"""Sum a list of numbers over time"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a+b for a, b in zip(self.data, args)]
def reset(self):
self.data = [0] * len(self.data)
def __getitem__(self, i):
return self.data[i]
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
def train_epoch_ch3(net, train_iter, loss, updater):
metric = Accumulator(3) # train_loss_sum, train_acc_sum, num_examples
if isinstance(updater, gluon.Trainer):
updater = updater.step
for X, y in train_iter:
# compute gradients and update parameters
with autograd.record():
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
updater(X.shape[0])
metric.add(l.sum().asscalar(), accuracy(y_hat, y), y.size)
# Return training loss and training accuracy
return metric[0]/metric[2], metric[1]/metric[2]
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
class Animator(object):
def __init__(self, xlabel=None, ylabel=None, legend=[], xlim=None,
ylim=None, xscale='linear', yscale='linear', fmts=None,
nrows=1, ncols=1, figsize=(3.5, 2.5)):
"""Incrementally plot multiple lines."""
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1: self.axes = [self.axes,]
# use a lambda to capture arguments
self.config_axes = lambda : d2l.set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
"""Add multiple data points into the figure."""
if not hasattr(y, "__len__"): y = [y]
n = len(y)
if not hasattr(x, "__len__"): x = [x] * n
if not self.X: self.X = [[] for _ in range(n)]
if not self.Y: self.Y = [[] for _ in range(n)]
if not self.fmts: self.fmts = ['-'] * n
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
trains, test_accs = [], []
animator = Animator(xlabel='epoch', xlim=[1, num_epochs],
ylim=[0.3, 0.9],
legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch+1, train_metrics+(test_acc,))
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
def predict_ch3(net, test_iter, n=6):
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y.asnumpy())
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1).asnumpy())
titles = [true+'\n'+ pred for true, pred in zip(trues, preds)]
d2l.show_images(X[0:n].reshape((n,28,28)), 1, n, titles=titles[0:n])
# Defined in file: ./chapter_multilayer-perceptrons/underfit-overfit.md
def evaluate_loss(net, data_iter, loss):
"""Evaluate the loss of a model on the given dataset"""
metric = d2l.Accumulator(2) # sum_loss, num_examples
for X, y in data_iter:
metric.add(loss(net(X), y).sum().asscalar(), y.size)
return metric[0] / metric[1]
# Defined in file: ./chapter_deep-learning-computation/use-gpu.md
def try_gpu(i=0):
"""Return gpu(i) if exists, otherwise return cpu()."""
return context.gpu(i) if context.num_gpus() >= i + 1 else context.cpu()
# Defined in file: ./chapter_deep-learning-computation/use-gpu.md
def try_all_gpus():
"""Return all available GPUs, or [cpu(),] if no GPU exists."""
ctxes = [context.gpu(i) for i in range(context.num_gpus())]
return ctxes if ctxes else [context.cpu()]
# Defined in file: ./chapter_convolutional-neural-networks/conv-layer.md
def corr2d(X, K):
"""Compute 2D cross-correlation."""
h, w = K.shape
Y = nd.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
return Y
# Defined in file: ./chapter_convolutional-neural-networks/lenet.md
def evaluate_accuracy_gpu(net, data_iter, ctx=None):
if not ctx: # Query the first device the first parameter is on.
ctx = list(net.collect_params().values())[0].list_ctx()[0]
metric = d2l.Accumulator(2) # num_corrected_examples, num_examples
for X, y in data_iter:
X, y = X.as_in_context(ctx), y.as_in_context(ctx)
metric.add(d2l.accuracy(net(X), y), y.size)
return metric[0]/metric[1]
# Defined in file: ./chapter_convolutional-neural-networks/lenet.md
def train_ch5(net, train_iter, test_iter, num_epochs, lr, ctx=d2l.try_gpu()):
net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(),
'sgd', {'learning_rate': lr})
animator = d2l.Animator(xlabel='epoch', xlim=[0,num_epochs],
legend=['train loss','train acc','test acc'])
timer = d2l.Timer()
for epoch in range(num_epochs):
metric = d2l.Accumulator(3) # train_loss, train_acc, num_examples
for i, (X, y) in enumerate(train_iter):
timer.start()
# Here is the only difference compared to train_epoch_ch3
X, y = X.as_in_context(ctx), y.as_in_context(ctx)
with autograd.record():
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
trainer.step(X.shape[0])
metric.add(l.sum().asscalar(), d2l.accuracy(y_hat, y), X.shape[0])
timer.stop()
train_loss, train_acc = metric[0]/metric[2], metric[1]/metric[2]
if (i+1) % 50 == 0:
animator.add(epoch + i/len(train_iter),
(train_loss, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch+1, (None, None, test_acc))
print('loss %.3f, train acc %.3f, test acc %.3f' % (
train_loss, train_acc, test_acc))
print('%.1f exampes/sec on %s'%(metric[2]*num_epochs/timer.sum(), ctx))
# Defined in file: ./chapter_convolutional-modern/resnet.md
class Residual(nn.Block):
def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):
super(Residual, self).__init__(**kwargs)
self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1,
strides=strides)
self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2D(num_channels, kernel_size=1,
strides=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm()
self.bn2 = nn.BatchNorm()
def forward(self, X):
Y = nd.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
return nd.relu(Y + X)
# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
def read_time_machine():
"""Load the time machine book into a list of sentences."""
with open('../data/timemachine.txt', 'r') as f:
lines = f.readlines()
return [re.sub('[^A-Za-z]+', ' ', line.strip().lower())
for line in lines]
# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
def tokenize(lines, token='word'):
"""Split sentences into word or char tokens"""
if token == 'word':
return [line.split(' ') for line in lines]
elif token == 'char':
return [list(line) for line in lines]
else:
print('ERROR: unkown token type '+token)
# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
class Vocab(object):
def __init__(self, tokens, min_freq=0, use_special_tokens=False):
# Sort according to frequencies
counter = count_corpus(tokens)
self.token_freqs = sorted(counter.items(), key=lambda x: x[0])
self.token_freqs.sort(key=lambda x: x[1], reverse=True)
if use_special_tokens:
# padding, begin of sentence, end of sentence, unknown
self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3)
uniq_tokens = ['<pad>', '<bos>', '<eos>', '<unk>']
else:
self.unk, uniq_tokens = 0, ['<unk>']
uniq_tokens += [token for token, freq in self.token_freqs
if freq >= min_freq and token not in uniq_tokens]
self.idx_to_token, self.token_to_idx = [], dict()
for token in uniq_tokens:
self.idx_to_token.append(token)
self.token_to_idx[token] = len(self.idx_to_token) - 1
def __len__(self):
return len(self.idx_to_token)
def __getitem__(self, tokens):
if not isinstance(tokens, (list, tuple)):
return self.token_to_idx.get(tokens, self.unk)
return [self.__getitem__(token) for token in tokens]
def to_tokens(self, indices):
if not isinstance(indices, (list, tuple)):
return self.idx_to_token[indices]
return [self.idx_to_token[index] for index in indices]
# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
def count_corpus(sentences):
# Flatten a list of token lists into a list of tokens
tokens = [tk for line in sentences for tk in line]
return collections.Counter(tokens)
# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
def load_corpus_time_machine(max_tokens=-1):
lines = read_time_machine()
tokens = tokenize(lines, 'char')
vocab = Vocab(tokens)
corpus = [vocab[tk] for line in tokens for tk in line]
if max_tokens > 0: corpus = corpus[:max_tokens]
return corpus, vocab
# Defined in file: ./chapter_recurrent-neural-networks/lang-model.md
def seq_data_iter_random(corpus, batch_size, num_steps):
# Offset the iterator over the data for uniform starts
corpus = corpus[random.randint(0, num_steps):]
# Subtract 1 extra since we need to account for label
num_examples = ((len(corpus) - 1) // num_steps)
example_indices = list(range(0, num_examples * num_steps, num_steps))
random.shuffle(example_indices)
# This returns a sequence of the length num_steps starting from pos
data = lambda pos: corpus[pos: pos + num_steps]
# Discard half empty batches
num_batches = num_examples // batch_size
for i in range(0, batch_size * num_batches, batch_size):
# Batch_size indicates the random examples read each time
batch_indices = example_indices[i:(i+batch_size)]
X = [data(j) for j in batch_indices]
Y = [data(j + 1) for j in batch_indices]
yield nd.array(X), nd.array(Y)
# Defined in file: ./chapter_recurrent-neural-networks/lang-model.md
def seq_data_iter_consecutive(corpus, batch_size, num_steps):
# Offset for the iterator over the data for uniform starts
offset = random.randint(0, num_steps)
# Slice out data - ignore num_steps and just wrap around
num_indices = ((len(corpus) - offset - 1) // batch_size) * batch_size
Xs = nd.array(corpus[offset:offset+num_indices])
Ys = nd.array(corpus[offset+1:offset+1+num_indices])
Xs, Ys = Xs.reshape((batch_size, -1)), Ys.reshape((batch_size, -1))
num_batches = Xs.shape[1] // num_steps
for i in range(0, num_batches * num_steps, num_steps):
X = Xs[:,i:(i+num_steps)]
Y = Ys[:,i:(i+num_steps)]
yield X, Y
# Defined in file: ./chapter_recurrent-neural-networks/lang-model.md
class SeqDataLoader(object):
"""A iterator to load sequence data"""
def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):
if use_random_iter:
data_iter_fn = d2l.seq_data_iter_random
else:
data_iter_fn = d2l.seq_data_iter_consecutive
self.corpus, self.vocab = d2l.load_corpus_time_machine(max_tokens)
self.get_iter = lambda: data_iter_fn(self.corpus, batch_size, num_steps)
def __iter__(self):
return self.get_iter()
# Defined in file: ./chapter_recurrent-neural-networks/lang-model.md
def load_data_time_machine(batch_size, num_steps, use_random_iter=False,
max_tokens=10000):
data_iter = SeqDataLoader(
batch_size, num_steps, use_random_iter, max_tokens)
return data_iter, data_iter.vocab
# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
class RNNModelScratch(object):
"""A RNN Model based on scratch implementations"""
def __init__(self, vocab_size, num_hiddens, ctx,
get_params, init_state, forward):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.params = get_params(vocab_size, num_hiddens, ctx)
self.init_state, self.forward_fn = init_state, forward
def __call__(self, X, state):
X = nd.one_hot(X.T, self.vocab_size)
return self.forward_fn(X, state, self.params)
def begin_state(self, batch_size, ctx):
return self.init_state(batch_size, self.num_hiddens, ctx)
# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
def predict_ch8(prefix, num_predicts, model, vocab, ctx):
state = model.begin_state(batch_size=1, ctx=ctx)
outputs = [vocab[prefix[0]]]
get_input = lambda: nd.array([outputs[-1]], ctx=ctx).reshape((1, 1))
for y in prefix[1:]: # Warmup state with prefix
_, state = model(get_input(), state)
outputs.append(vocab[y])
for _ in range(num_predicts): # Predict num_predicts steps
Y, state = model(get_input(), state)
outputs.append(int(Y.argmax(axis=1).reshape(1).asscalar()))
return ''.join([vocab.idx_to_token[i] for i in outputs])
# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
def grad_clipping(model, theta):
if isinstance(model, gluon.Block):
params = [p.data() for p in model.collect_params().values()]
else:
params = model.params
norm = math.sqrt(sum((p.grad ** 2).sum().asscalar() for p in params))
if norm > theta:
for param in params:
param.grad[:] *= theta / norm
# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
def train_epoch_ch8(model, train_iter, loss, updater, ctx, use_random_iter):
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2) # loss_sum, num_examples
for X, Y in train_iter:
if state is None or use_random_iter:
# Initialize state when either it's the first iteration or
# using random sampling.
state = model.begin_state(batch_size=X.shape[0], ctx=ctx)
else:
for s in state: s.detach()
y = Y.T.reshape((-1,))
X, y = X.as_in_context(ctx), y.as_in_context(ctx)
with autograd.record():
py, state = model(X, state)
l = loss(py, y).mean()
l.backward()
grad_clipping(model, 1)
updater(batch_size=1) # Since used mean already.
metric.add(l.asscalar() * y.size, y.size)
return math.exp(metric[0]/metric[1]), metric[1]/timer.stop()
# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
def train_ch8(model, train_iter, vocab, lr, num_epochs, ctx,
use_random_iter=False):
# Initialize
loss = gluon.loss.SoftmaxCrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
legend=['train'], xlim=[1, num_epochs])
if isinstance(model, gluon.Block):
model.initialize(ctx=ctx, force_reinit=True, init=init.Normal(0.01))
trainer = gluon.Trainer(model.collect_params(), 'sgd', {'learning_rate': lr})
updater = lambda batch_size : trainer.step(batch_size)
else:
updater = lambda batch_size : d2l.sgd(model.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 50, model, vocab, ctx)
# Train and check the progress.
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(
model, train_iter, loss, updater, ctx, use_random_iter)
if epoch % 10 == 0:
print(predict('time traveller'))
animator.add(epoch+1, [ppl])
print('Perplexity %.1f, %d tokens/sec on %s' % (ppl, speed, ctx))
print(predict('time traveller'))
print(predict('traveller'))
# Defined in file: ./chapter_recurrent-neural-networks/rnn-gluon.md
class RNNModel(nn.Block):
def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.dense = nn.Dense(vocab_size)
def forward(self, inputs, state):
X = nd.one_hot(inputs.T, self.vocab_size)
Y, state = self.rnn(X, state)
# The fully connected layer will first change the shape of Y to
# (num_steps * batch_size, num_hiddens)
# Its output shape is (num_steps * batch_size, vocab_size)
output = self.dense(Y.reshape((-1, Y.shape[-1])))
return output, state
def begin_state(self, *args, **kwargs):
return self.rnn.begin_state(*args, **kwargs)
# Defined in file: ./chapter_recurrent-neural-networks/machine-translation.md
def read_data_nmt():
fname = gluon.utils.download('http://data.mxnet.io/data/fra-eng.zip')
with zipfile.ZipFile(fname, 'r') as f:
return f.read('fra.txt').decode("utf-8")
# Defined in file: ./chapter_recurrent-neural-networks/machine-translation.md
def preprocess_nmt(text):
text = text.replace('\u202f', ' ').replace('\xa0', ' ')
no_space = lambda char, prev_char: (
True if char in (',', '!', '.') and prev_char != ' ' else False)
out = [' '+char if i > 0 and no_space(char, text[i-1]) else char
for i, char in enumerate(text.lower())]
return ''.join(out)
# Defined in file: ./chapter_recurrent-neural-networks/machine-translation.md
def tokenize_nmt(text, num_examples = None):
source, target = [], []
for i, line in enumerate(text.split('\n')):
if num_examples and i > num_examples: break
parts = line.split('\t')
if len(parts) == 2:
source.append(parts[0].split(' '))
target.append(parts[1].split(' '))
return source, target
# Defined in file: ./chapter_recurrent-neural-networks/machine-translation.md
def trim_pad(line, num_steps, padding_token):
if len(line) > num_steps: return line[:num_steps] # Trim
return line + [padding_token] * (num_steps - len(line)) # Pad
# Defined in file: ./chapter_recurrent-neural-networks/machine-translation.md
def build_array(lines, vocab, num_steps, is_source):
lines = [vocab[l] for l in lines]
if not is_source:
lines = [[vocab.bos] + l + [vocab.eos] for l in lines]
array = nd.array([trim_pad(l, num_steps, vocab.pad) for l in lines])
valid_len = (array != vocab.pad).sum(axis=1)
return array, valid_len
# Defined in file: ./chapter_recurrent-neural-networks/machine-translation.md
def load_data_nmt(batch_size, num_steps, num_examples=1000):
text = preprocess_nmt(read_data_nmt())
source, target = tokenize_nmt(text, num_examples)
src_vocab = d2l.Vocab(source, min_freq=3, use_special_tokens=True)
tgt_vocab = d2l.Vocab(target, min_freq=3, use_special_tokens=True)
src_array, src_valid_len = build_array(
source, src_vocab, num_steps, True)
tgt_array, tgt_valid_len = build_array(
target, tgt_vocab, num_steps, False)
data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
data_iter = d2l.load_array(data_arrays, batch_size)
return src_vocab, tgt_vocab, data_iter
# Defined in file: ./chapter_recurrent-neural-networks/encoder-decoder.md
class Encoder(nn.Block):
"""The base encoder interface for the encoder-decoder architecture."""
def __init__(self, **kwargs):
super(Encoder, self).__init__(**kwargs)
def forward(self, X):
raise NotImplementedError
# Defined in file: ./chapter_recurrent-neural-networks/encoder-decoder.md
class Decoder(nn.Block):
"""The base decoder interface for the encoder-decoder archtecture."""
def __init__(self, **kwargs):
super(Decoder, self).__init__(**kwargs)
def init_state(self, enc_outputs, *args):
raise NotImplementedError
def forward(self, X, state):
raise NotImplementedError
# Defined in file: ./chapter_recurrent-neural-networks/encoder-decoder.md
class EncoderDecoder(nn.Block):
"""The base class for the encoder-decoder architecture."""
def __init__(self, encoder, decoder, **kwargs):
super(EncoderDecoder, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
def forward(self, enc_X, dec_X, *args):
enc_outputs = self.encoder(enc_X, *args)
dec_state = self.decoder.init_state(enc_outputs, *args)
return self.decoder(dec_X, dec_state)
# Defined in file: ./chapter_recurrent-neural-networks/seq2seq.md
class Seq2SeqEncoder(d2l.Encoder):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
dropout=0, **kwargs):
super(Seq2SeqEncoder, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = rnn.LSTM(num_hiddens, num_layers, dropout=dropout)
def forward(self, X, *args):
X = self.embedding(X) # X shape: (batch_size, seq_len, embed_size)
X = X.swapaxes(0, 1) # RNN needs first axes to be time
state = self.rnn.begin_state(batch_size=X.shape[1], ctx=X.context)
out, state = self.rnn(X, state)
# The shape of out is (seq_len, batch_size, num_hiddens).
# state contains the hidden state and the memory cell
# of the last time step, the shape is (num_layers, batch_size, num_hiddens)
return out, state
# Defined in file: ./chapter_recurrent-neural-networks/seq2seq.md
class Seq2SeqDecoder(d2l.Decoder):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
dropout=0, **kwargs):
super(Seq2SeqDecoder, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = rnn.LSTM(num_hiddens, num_layers, dropout=dropout)
self.dense = nn.Dense(vocab_size, flatten=False)
def init_state(self, enc_outputs, *args):
return enc_outputs[1]
def forward(self, X, state):
X = self.embedding(X).swapaxes(0, 1)
out, state = self.rnn(X, state)
# Make the batch to be the first dimension to simplify loss computation.
out = self.dense(out).swapaxes(0, 1)
return out, state
# Defined in file: ./chapter_recurrent-neural-networks/seq2seq.md
class MaskedSoftmaxCELoss(gluon.loss.SoftmaxCELoss):
# pred shape: (batch_size, seq_len, vocab_size)
# label shape: (batch_size, seq_len)
# valid_length shape: (batch_size, )
def forward(self, pred, label, valid_length):
# the sample weights shape should be (batch_size, seq_len, 1)
weights = nd.ones_like(label).expand_dims(axis=-1)
weights = nd.SequenceMask(weights, valid_length, True, axis=1)
return super(MaskedSoftmaxCELoss, self).forward(pred, label, weights)
# Defined in file: ./chapter_recurrent-neural-networks/seq2seq.md
def train_s2s_ch8(model, data_iter, lr, num_epochs, ctx):
model.initialize(init.Xavier(), force_reinit=True, ctx=ctx)
trainer = gluon.Trainer(model.collect_params(),
'adam', {'learning_rate': lr})
loss = MaskedSoftmaxCELoss()
#tic = time.time()
animator = d2l.Animator(xlabel='epoch', ylabel='loss',
xlim=[1, num_epochs], ylim=[0, 0.25])
for epoch in range(1, num_epochs+1):
timer = d2l.Timer()
metric = d2l.Accumulator(2) # loss_sum, num_tokens
for batch in data_iter:
X, X_vlen, Y, Y_vlen = [x.as_in_context(ctx) for x in batch]
Y_input, Y_label, Y_vlen = Y[:,:-1], Y[:,1:], Y_vlen-1
with autograd.record():
Y_hat, _ = model(X, Y_input, X_vlen, Y_vlen)
l = loss(Y_hat, Y_label, Y_vlen)
l.backward()
d2l.grad_clipping(model, 1)
num_tokens = Y_vlen.sum().asscalar()
trainer.step(num_tokens)
metric.add(l.sum().asscalar(), num_tokens)
if epoch % 10 == 0:
animator.add(epoch, metric[0]/metric[1])
print('loss %.3f, %d tokens/sec on %s ' % (
metric[0]/metric[1], metric[1]/timer.stop(), ctx))
# Defined in file: ./chapter_recurrent-neural-networks/seq2seq.md
def predict_s2s_ch8(model, src_sentence, src_vocab, tgt_vocab, num_steps, ctx):
src_tokens = src_vocab[src_sentence.lower().split(' ')]
enc_valid_length = nd.array([len(src_tokens)], ctx=ctx)
src_tokens = d2l.trim_pad(src_tokens, num_steps, src_vocab.pad)
enc_X = nd.array(src_tokens, ctx=ctx)
# add the batch_size dimension.
enc_outputs = model.encoder(enc_X.expand_dims(axis=0), enc_valid_length)
dec_state = model.decoder.init_state(enc_outputs, enc_valid_length)
dec_X = nd.array([tgt_vocab.bos], ctx=ctx).expand_dims(axis=0)
predict_tokens = []
for _ in range(num_steps):
Y, dec_state = model.decoder(dec_X, dec_state)
# The token with highest score is used as the next time step input.
dec_X = Y.argmax(axis=2)
py = dec_X.squeeze(axis=0).astype('int32').asscalar()
if py == tgt_vocab.eos:
break
predict_tokens.append(py)
return ' '.join(tgt_vocab.to_tokens(predict_tokens))
# Defined in file: ./chapter_attention-mechanism/attention.md
def masked_softmax(X, valid_length):
# X: 3-D tensor, valid_length: 1-D or 2-D tensor
if valid_length is None:
return X.softmax()
else:
shape = X.shape
if valid_length.ndim == 1:
valid_length = valid_length.repeat(shape[1], axis=0)
else:
valid_length = valid_length.reshape((-1,))
# fill masked elements with a large negative, whose exp is 0
X = nd.SequenceMask(X.reshape((-1, shape[-1])), valid_length, True,
axis=1, value=-1e6)
return X.softmax().reshape(shape)
# Defined in file: ./chapter_attention-mechanism/attention.md
class DotProductAttention(nn.Block):
def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
# query: (batch_size, #queries, d)
# key: (batch_size, #kv_pairs, d)
# value: (batch_size, #kv_pairs, dim_v)
# valid_length: either (batch_size, ) or (batch_size, xx)
def forward(self, query, key, value, valid_length=None):
d = query.shape[-1]
# set transpose_b=True to swap the last two dimensions of key
scores = nd.batch_dot(query, key, transpose_b=True) / math.sqrt(d)
attention_weights = self.dropout(masked_softmax(scores, valid_length))
return nd.batch_dot(attention_weights, value)
# Defined in file: ./chapter_attention-mechanism/attention.md
class MLPAttention(nn.Block):
def __init__(self, units, dropout, **kwargs):
super(MLPAttention, self).__init__(**kwargs)
# Use flatten=True to keep query's and key's 3-D shapes.
self.W_k = nn.Dense(units, activation='tanh',
use_bias=False, flatten=False)
self.W_q = nn.Dense(units, activation='tanh',
use_bias=False, flatten=False)
self.v = nn.Dense(1, use_bias=False, flatten=False)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, valid_length):
query, key = self.W_k(query), self.W_q(key)
# expand query to (batch_size, #querys, 1, units), and key to
# (batch_size, 1, #kv_pairs, units). Then plus them with broadcast.
features = query.expand_dims(axis=2) + key.expand_dims(axis=1)
scores = self.v(features).squeeze(axis=-1)
attention_weights = self.dropout(masked_softmax(scores, valid_length))
return nd.batch_dot(attention_weights, value)
# Defined in file: ./chapter_optimization/optimization-intro.md
def annotate(text, xy, xytext):
d2l.plt.gca().annotate(text, xy=xy, xytext=xytext,
arrowprops=dict(arrowstyle='->'))
# Defined in file: ./chapter_optimization/gd.md
def train_2d(trainer):
"""Optimize a 2-dim objective function with a customized trainer."""
# s1 and s2 are internal state variables and will
# be used later in the chapter
x1, x2, s1, s2 = -5, -2, 0, 0
results = [(x1, x2)]
for i in range(20):
x1, x2, s1, s2 = trainer(x1, x2, s1, s2)
results.append((x1, x2))
print('epoch %d, x1 %f, x2 %f' % (i + 1, x1, x2))
return results
# Defined in file: ./chapter_optimization/gd.md
def show_trace_2d(f, results):
"""Show the trace of 2D variables during optimization."""
d2l.set_figsize((3.5, 2.5))
d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e')
x1, x2 = np.meshgrid(np.arange(-5.5, 1.0, 0.1), np.arange(-3.0, 1.0, 0.1))
d2l.plt.contour(x1, x2, f(x1, x2), colors='#1f77b4')
d2l.plt.xlabel('x1')
d2l.plt.ylabel('x2')
# Defined in file: ./chapter_optimization/minibatch-sgd.md
def get_data_ch10(batch_size=10, n=1500):
data = np.genfromtxt('../data/airfoil_self_noise.dat', delimiter='\t')
data = nd.array((data - data.mean(axis=0)) / data.std(axis=0))
data_iter = d2l.load_array((data[:n, :-1], data[:n, -1]),
batch_size, is_train=True)
return data_iter, data.shape[1]-1
# Defined in file: ./chapter_optimization/minibatch-sgd.md
def train_ch10(trainer_fn, states, hyperparams, data_iter,
feature_dim, num_epochs=2):
# Initialization
w = nd.random.normal(scale=0.01, shape=(feature_dim, 1))
b = nd.zeros(1)
w.attach_grad()
b.attach_grad()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
# Train
animator = d2l.Animator(xlabel='epoch', ylabel='loss',
xlim=[0, num_epochs], ylim=[0.22, 0.35])
n, timer = 0, d2l.Timer()
for _ in range(num_epochs):
for X, y in data_iter:
with autograd.record():
l = loss(net(X), y).mean()
l.backward()
trainer_fn([w, b], states, hyperparams)
n += X.shape[0]
if n % 200 == 0:
timer.stop()
animator.add(n/X.shape[0]/len(data_iter),
d2l.evaluate_loss(net, data_iter, loss))
timer.start()
print('loss: %.3f, %.3f sec/epoch'%(animator.Y[0][-1], timer.avg()))
return timer.cumsum(), animator.Y[0]
# Defined in file: ./chapter_optimization/minibatch-sgd.md
def train_gluon_ch10(trainer_name, trainer_hyperparams,
data_iter, num_epochs=2):
# Initialization
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(init.Normal(sigma=0.01))
trainer = gluon.Trainer(
net.collect_params(), trainer_name, trainer_hyperparams)
loss = gluon.loss.L2Loss()
animator = d2l.Animator(xlabel='epoch', ylabel='loss',
xlim=[0, num_epochs], ylim=[0.22, 0.35])
n, timer = 0, d2l.Timer()
for _ in range(num_epochs):
for X, y in data_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(X.shape[0])
n += X.shape[0]
if n % 200 == 0:
timer.stop()
animator.add(n/X.shape[0]/len(data_iter),
d2l.evaluate_loss(net, data_iter, loss))
timer.start()
print('loss: %.3f, %.3f sec/epoch'%(animator.Y[0][-1], timer.avg()))
# Defined in file: ./chapter_computational-performance/multiple-gpus.md
def split_batch(X, y, ctx_list):
"""Split X and y into multiple devices specified by ctx"""
assert X.shape[0] == y.shape[0]
return (gluon.utils.split_and_load(X, ctx_list),
gluon.utils.split_and_load(y, ctx_list))
# Defined in file: ./chapter_computational-performance/multiple-gpus-gluon.md
def resnet18(num_classes):
"""A slightly modified ResNet-18 model"""
def resnet_block(num_channels, num_residuals, first_block=False):
blk = nn.Sequential()
for i in range(num_residuals):
if i == 0 and not first_block:
blk.add(d2l.Residual(
num_channels, use_1x1conv=True, strides=2))
else:
blk.add(d2l.Residual(num_channels))
return blk
net = nn.Sequential()
# This model uses a smaller convolution kernel, stride, and padding and
# removes the maximum pooling layer
net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1),
nn.BatchNorm(), nn.Activation('relu'))
net.add(resnet_block(64, 2, first_block=True),
resnet_block(128, 2),
resnet_block(256, 2),
resnet_block(512, 2))
net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
return net
# Defined in file: ./chapter_computational-performance/multiple-gpus-gluon.md
def evaluate_accuracy_gpus(net, data_iter):
# Query the list of devices.
ctx_list = list(net.collect_params().values())[0].list_ctx()
metric = d2l.Accumulator(2) # num_corrected_examples, num_examples
for features, labels in data_iter:
Xs, ys = d2l.split_batch(features, labels, ctx_list)
pys = [net(X) for X in Xs] # run in parallel
metric.add(sum(d2l.accuracy(py, y) for py, y in zip(pys, ys)),
labels.size)
return metric[0]/metric[1]
# Defined in file: ./chapter_computer-vision/image-augmentation.md
def train_batch_ch12(net, features, labels, loss, trainer, ctx_list):
Xs, ys = d2l.split_batch(features, labels, ctx_list)
with autograd.record():
pys = [net(X) for X in Xs]
ls = [loss(py, y) for py, y in zip(pys, ys)]
for l in ls:
l.backward()
trainer.step(features.shape[0])
train_loss_sum = sum([l.sum().asscalar() for l in ls])
train_acc_sum = sum(d2l.accuracy(py, y) for py, y in zip(pys, ys))
return train_loss_sum, train_acc_sum
# Defined in file: ./chapter_computer-vision/image-augmentation.md
def train_ch12(net, train_iter, test_iter, loss, trainer, num_epochs,
ctx_list=d2l.try_all_gpus()):
num_batches, timer = len(train_iter), d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[0,num_epochs], ylim=[0,2],
legend=['train loss','train acc','test acc'])
for epoch in range(num_epochs):
# store training_loss, training_accuracy, num_examples, num_features
metric = d2l.Accumulator(4)
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = train_batch_ch12(
net, features, labels, loss, trainer, ctx_list)