-
Notifications
You must be signed in to change notification settings - Fork 0
/
resources.qmd
144 lines (116 loc) Β· 7.65 KB
/
resources.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
title: "Resources"
---
```{r, include = FALSE}
library(dplyr)
library(kableExtra)
```
## Getting started
- [R reference card](http://cran.r-project.org/doc/contrib/Short-refcard.pdf)
- [R introductory guide](https://cran.r-project.org/doc/manuals/r-release/R-intro.html)
- [R jargon](https://link.springer.com/content/pdf/bbm%3A978-1-4419-1318-0%2F1.pdf)
- [R terminology](https://cran.r-project.org/doc/manuals/r-release/R-lang.pdf)
- [What is the Tidyverse/what packages are in it?](https://www.tidyverse.org/packages/)
- [Where do package names come from?](https://www.statworx.com/en/content-hub/blog/why-is-it-called-that-way-origin-and-meaning-of-r-package-names/)
- [Lawlor et al. 2022](https://doi.org/10.1371/journal.pcbi.1010372): Ten simple rules for teaching yourself R
## Troubleshooting guides
- [Guide on when to use quotes or backticks](https://jhudatascience.org/intro_to_r/resources/quotes_vs_backticks.html)
- [Guide on what functions require `pull()` first](https://jhudatascience.org/intro_to_r/resources/functions_for_vectors.html)
## Keyboard shortcuts
- RStudio shortcuts can be found [here](<http://www.rstudio.com/ide/docs/using/keyboard_shortcuts>).
## Extra help
### Data importing
- [Video on data import](https://youtu.be/LEkNfJgpunQ)
- [Video](https://www.youtube.com/watch?v=we6vwB7DsNU) for PC users who want to see how to move files around (especially from downloads)
- [Video](https://www.youtube.com/watch?v=Ao9e0cDzMrE) for Mac users who want to see how to move files around (especially from downloads)
- [Extra information about file paths](https://docs.google.com/presentation/d/18u1Vhd3Uq-QprC0btpxS_-Ka-LKVUvncyoqdbGdb-g4/edit?usp=sharing)
### Joining datasets
- [`full-join()` animation](https://github.com/gadenbuie/tidyexplain/blob/master/images/full-join.gif)
- [`inner_join()` animation](https://github.com/gadenbuie/tidyexplain/blob/master/images/inner-join.gif)
- [`left-join()` animation](https://github.com/gadenbuie/tidyexplain/blob/master/images/left-join.gif)
- [`right-join()` animation](https://github.com/gadenbuie/tidyexplain/blob/master/images/right-join.gif)
### Plotting data
- [`ggplot2` gallery](https://r-graph-gallery.com/ggplot2-package.html) - See what is possible with `ggplot2` to create graphs in R
- [`ggplot2` theme cheatsheet](https://github.com/claragranell/ggplot2/blob/main/ggplot_theme_system_cheatsheet.pdf)
- [Visualization best practices](https://jhudatascience.org/tidyversecourse/dataviz.html#making-good-plots)
- [Guide on when to use which plot](https://infogram.com/page/choose-the-right-chart-data-visualization)
- [Guide to building up a `ggplot2` figure](https://hopstat.wordpress.com/2016/02/18/how-i-build-up-a-ggplot2-figure/)
### Statistics
- [Guide on when to use what stats test](https://www.scribbr.com/statistics/statistical-tests/)
- [Modeling 101](https://jhudatascience.org/tidyversecourse/model.html#linear-modeling)
- [Common statistical tests are linear models](https://lindeloev.github.io/tests-as-linear/) (why understanding linear models will get you far!)
- [Interpreting GLM output (e.g., deviance)](https://www.statology.org/null-residual-deviance/)
## Courses & Conferences
### Online Courses and Resources
- [Tidyverse Skills for Data Science Book](https://jhudatascience.org/tidyversecourse/) (**a great next step** to learn more about the tidyverse, some modeling, and machine learning)
- [Tidyverse Skills for Data Science Course](https://www.coursera.org/specializations/tidyverse-data-science-r) (same content with quizzes, can get certificate with $)
- [Open Case Studies](https://www.opencasestudies.org/)
(resource for specific public health cases with statistical implementation and interpretation - **a great next step** for learning more about stats and wrangling!)
- [R for Data Science](http://r4ds.had.co.nz/) (great general information)
- [R for Applied Epidemiology](https://epirhandbook.com/en/) (Similar general introductory course)
- [R basics chapter of Introduction to Data Science by Rafael A. Irizarry](https://rafalab.github.io/dsbook/r-basics.html)(great general information)
- [Dataquest](https://www.dataquest.io/) (general interactive resource)
- [Quick R Guide]( http://statmethods.net/) (nice free general resource)
- [Introduction to Reproducibility](https://jhudatascience.org/Reproducibility_in_Cancer_Informatics/)
- [Advanced Reproducibility](https://jhudatascience.org/Adv_Reproducibility_in_Cancer_Informatics/)
### R Conferences
- The [RStudio/Posit conference](https://posit.co/conference/) has lots of useful workshops!
- useR! β International R User Conference information can be found [here](https://www.r-project.org/conferences/).
## R for Stata, SPSS, and SAS files
- The [Haven](https://haven.tidyverse.org/) package
(This package is super useful for reading and writing files so that they are compatible across Stata, SPSS, SAS, and R)
- [R vs Stata](https://link.springer.com/content/pdf/bbm%3A978-1-4419-1318-0%2F1.pdf)
(See page 505)
- [R <-> SAS Cheatsheet](https://raw.githubusercontent.com/rstudio/cheatsheets/main/sas-r.pdf)
- [SAS to R Converter](https://www.codeconvert.ai/sas-to-r-converter)
- You might also find large language models like ChatGPT useful for code conversion. Be sure to check the output because AI makes mistakes!
## Videos of Online Lectures
### JHU Summer Institute 2023
```{r, echo = FALSE, message = FALSE, results='asis'}
mat <- matrix(c(
"Introduction", "https://youtu.be/aIJrFKQYnP8",
"RStudio", "https://youtu.be/cxHVf5rTK1c",
"Reproducibility", "https://youtu.be/af9B9-_df1o",
"Basic R", "https://youtu.be/5io-iZDutH8",
"Data Input", "https://youtu.be/sllVVRD5YE4",
"Subsetting Data", "https://youtu.be/dWdK3bnAGm8",
"Data Classes", "https://youtu.be/Q4ubnU35TUs",
"Data Summarization", "https://youtu.be/xsI30yCGgTQ",
"Data Cleaning", "https://youtu.be/qL6_yfiR9Jk",
"Data Manipulation", "https://youtu.be/fQ7lDp8Svw0",
"Intro to Data Visualization", "https://youtu.be/D5RdNwadtR0",
"Data Visualization", "https://youtu.be/fKj1iBxLwyk",
"Factors", "https://youtu.be/yqU5zHVh-qA",
"Statistics", "https://youtu.be/T9Oh0miYhZ0",
"Data Output", "https://youtu.be/x2OuR4JhPLY",
"Functions", "https://youtu.be/jWv5RSXq5mo"
), ncol = 2, byrow = TRUE)
mat <- data.frame(mat, stringsAsFactors = FALSE)
mat <- mat %>% dplyr::mutate(X2 = paste0("<a href=", X2, ">", X2, "</a>"))
colnames(mat) <- c("Day", "Link to Video")
knitr::kable(mat, format = "html", escape = F) %>%
kable_styling()
```
### JHU Summer Institute 2022
```{r, echo = FALSE, message = FALSE, results='asis'}
mat <- matrix(c(
"RStudio and Reproducibility", "https://www.youtube.com/watch?v=eCsD0f0q6rY&t=9s",
"Basic R", "https://www.youtube.com/watch?v=2YRgDG3qsho",
"Data IO", "https://www.youtube.com/watch?v=ejnBAdA2N1c",
"Subsetting Data", "https://www.youtube.com/watch?v=GFa6dXAezJg",
"Data Summarization", "https://www.youtube.com/watch?v=kj_69maSANk",
"Data Classes", "https://www.youtube.com/watch?v=zoVciFJieLY&t=21s",
"Data Cleaning", "https://www.youtube.com/watch?v=GhK8xMUBNwg",
"Data Manipulation", "https://www.youtube.com/watch?v=qP73AWUjfAU",
"Intro to Data Visualization", "https://www.youtube.com/watch?v=OCVo6vWrKL4",
"Data Visualization", "https://www.youtube.com/watch?v=9UPlZqOfT_s",
"Factors", "https://www.youtube.com/watch?v=0fE756trEEE",
"Statistics", "https://www.youtube.com/watch?v=jZ5sskAdAJU&t=4s",
"Functions", "https://www.youtube.com/watch?v=dx-85RzN1G0"
), ncol = 2, byrow = TRUE)
mat <- data.frame(mat, stringsAsFactors = FALSE)
mat <- mat %>% dplyr::mutate(X2 = paste0("<a href=", X2, ">", X2, "</a>"))
colnames(mat) <- c("Day", "Link to Video")
knitr::kable(mat, format = "html", escape = F) %>%
kable_styling()
```