Writeup Template: You can use this file as a template for your writeup if you want to submit it as a markdown file, but feel free to use some other method and submit a pdf if you prefer.
The goals / steps of this project are the following:
Training / Calibration
- Download the simulator and take data in "Training Mode"
- Test out the functions in the Jupyter Notebook provided
- Add functions to detect obstacles and samples of interest (golden rocks)
- Fill in the
process_image()
function with the appropriate image processing steps (perspective transform, color threshold etc.) to get from raw images to a map. Theoutput_image
you create in this step should demonstrate that your mapping pipeline works. - Use
moviepy
to process the images in your saved dataset with theprocess_image()
function. Include the video you produce as part of your submission.
Autonomous Navigation / Mapping
- Fill in the
perception_step()
function within theperception.py
script with the appropriate image processing functions to create a map and updateRover()
data (similar to what you did withprocess_image()
in the notebook). - Fill in the
decision_step()
function within thedecision.py
script with conditional statements that take into consideration the outputs of theperception_step()
in deciding how to issue throttle, brake and steering commands. - Iterate on your perception and decision function until your rover does a reasonable (need to define metric) job of navigating and mapping.
Rubric Points
Here I will consider the rubric points individually and describe how I addressed each point in my implementation.
1. Provide a Writeup / README that includes all the rubric points and how you addressed each one. You can submit your writeup as markdown or pdf.
You're reading it!
1. Run the functions provided in the notebook on test images (first with the test data provided, next on data you have recorded). Add/modify functions to allow for color selection of obstacles and rock samples.
Here is an example of how to include an image in your writeup.
1. Populate the process_image()
function with the appropriate analysis steps to map pixels identifying navigable terrain, obstacles and rock samples into a worldmap. Run process_image()
on your test data using the moviepy
functions provided to create video output of your result.
And another!
1. Fill in the perception_step()
(at the bottom of the perception.py
script) and decision_step()
(in decision.py
) functions in the autonomous mapping scripts and an explanation is provided in the writeup of how and why these functions were modified as they were.
2. Launching in autonomous mode your rover can navigate and map autonomously. Explain your results and how you might improve them in your writeup.
Note: running the simulator with different choices of resolution and graphics quality may produce different results, particularly on different machines! Make a note of your simulator settings (resolution and graphics quality set on launch) and frames per second (FPS output to terminal by drive_rover.py
) in your writeup when you submit the project so your reviewer can reproduce your results.
Here I'll talk about the approach I took, what techniques I used, what worked and why, where the pipeline might fail and how I might improve it if I were going to pursue this project further.