-
Notifications
You must be signed in to change notification settings - Fork 2
/
SN_P.v
27 lines (22 loc) · 863 Bytes
/
SN_P.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
(****************************************************************************)
(****************************************************************************)
(*This file proves SN after embedding Presburger*)
(****************************************************************************)
(****************************************************************************)
Require Import PIntp.
Require Import AbsSNT.
Import PSem PSyn.
Module SNP := Abs_SN_Theory PresburgerTheory PresburgerSem IntpPresburger.
Import SNP.
Import SN_CC_Real.
Import SN.
Import PresburgerTheory PresburgerSem IntpPresburger.
Lemma SN_P : forall e x y,
(exists hyp a b s,
x = Sub (intp_foterm a) s /\
y = Sub (intp_foterm b) s /\
wf_clsd_env (intp_hyp hyp) /\
typ_sub e s (intp_hyp hyp) /\
deriv hyp (eq_foterm a b)) ->
eq_typ e x y.
Proof. apply SN_T. Qed.