-
Notifications
You must be signed in to change notification settings - Fork 3
/
cldm_seg_cityscapes_multi_step_D.yaml
98 lines (91 loc) · 2.57 KB
/
cldm_seg_cityscapes_multi_step_D.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
model:
target: cldm_seg.cldm_seg_pixel_seg_enc_multiStep.ControlLDM
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "image"
cond_stage_key: "txt"
control_key: "hint"
image_size: 64
channels: 4
cond_stage_trainable: false
conditioning_key: crossattn
monitor: val/loss_simple_ema # TODO: !change here!
scale_factor: 0.18215
use_ema: False # why?
only_mid_control: False
# vvv New! vvv
mask_encode_mode: "id"
class_emb_manager_config:
target: cldm_seg.util.ClassEmbeddingManager
params:
text_dim: 768
mode: "cityscapes" # Change here!
use_time: False
use_mapping: False
segmenter_config:
target: cldm_seg.seg.upernet_res_ADE.ADESegDiscriminator
params:
num_classes: 19 #150 # TODO: should be overwritten!
ignore_index: 255
segmenter_type: 'upernet101_20cls'
# ^^^ New! ^^^
control_stage_config:
target: cldm_seg.cldm_seg_pixel_seg_enc_multiStep.ControlNet
params:
image_size: 32 # unused
in_channels: 4
hint_channels: 768 # change here if the condition dim is changed!
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
unet_config:
target: cldm_seg.cldm_seg_pixel_seg_enc_multiStep.ControlledUnetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder