-
Notifications
You must be signed in to change notification settings - Fork 1
/
chap2.tex
150 lines (147 loc) · 7.41 KB
/
chap2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
%!TEX root = ./main.tex
\section{Waves and Diffusion}
\subsection{The wave equation}
Recall that the wave equation in in dimension
\[ u_{tt} = c^2 u_{xx} \quad \mathrm{for} \quad -\infty < x,t < \infty\]
Observe that
\[ 0 = u_{tt} - c^2 u_{xx} = \left( \frac{\partial }{\partial t} - c \frac{\partial }{\partial x} \right) \left( \frac{\partial }{\partial t} + c \frac{\partial }{\partial x} \right)v =: v \]
We can equivalently write our second order PDE as
\[\left\{ \begin{array}{rl}
u_{t} + c u_{x} &= v \quad (2) \\
v_t - c v_x &= 0 \quad (1) \\
\end{array} \right. \]
We know that the general solution to (1) is
\[ v(x,t) = h(x + ct)\]
where $h$ is an arbitrary function of one variable. Then substituting $v$ into (2) gives us
\[ u_t + cu_x = h(x + ct)\]
We know that one particular solution is given by $u(x,t) = f(x,t)$, where
\[ f'(s) = \frac{h(s)}{2t}\]
To that, we can add any of the homogeneous solution
\[ u_t + c u_x = 0 \implies u(x,t) = f(x + ct) + g(x - ct)\]
Hence we have shown that
\[ u(x,t) = f(x + ct) - g(x - ct)\]
where $f,g$ are arbitrary function.
\subsubsection{Characteristic coordinates}
Take
\[ \xi = x + ct \qquad \eta = x - ct\]
By the chain rule we have
\[ \partial_x = \frac{\partial}{\partial x} = \frac{\partial }{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial }{\partial \eta} \frac{\partial \eta}{\partial x} = \partial_\xi + \partial_\eta\]
\[ \partial_t = \frac{\partial}{\partial t} = \frac{\partial }{\partial \xi} \frac{\partial \xi}{\partial t} + \frac{\partial }{\partial \eta} \frac{\partial \eta}{\partial t} = c\partial_\xi - c\partial_\eta \]
Hence
\[ \partial_t - c \partial_x = -2c \partial_\eta \qquad \partial_t + c \partial_x = 2c \partial_\xi\]
SO the wave equation is of the form
\[ 0 = (\partial _t - c\partial_x)(\partial_t + cd_x)u = (-4c \partial_\xi)(2c\partial_\eta)u = -4c^2\partial u_{\xi \eta}\]
Since $-4c^2 \neq 0$, we have $u_{\xi \eta} = 0$.
So $u(x,y) = f(\xi) + g(\eta)$.
\subsubsection{Initial Value Problem}
Take
\[ \left\{ \begin{array}{rl}
u_{tt} &= c^2 u_{xx} \\
u(x,0) &= \phi(x) \\
u_t(x,0) &= \psi(x)
\end{array} \right. \]
where $\phi(x) = \sin x$, and $\psi(x) = 0$.
From the general solution we put $t = 0$ and obtain.
\[ \phi(x) = f(x) + g(x)\]
differential by $t$ we get
\[ \psi(x) = cf'(x) - cg'(x)\]
differentiate $\phi$ and divide $\psi$ by $c$ we get
\[ \phi's = f' + g' \qquad \frac1c \psi = f' - g'\]
Solving for $f'$ and $g'$ gives us
\[ f' = \frac 12 \left( \phi' + \frac \psi c \right) \qquad g' = \frac 12 \left( \phi' - \frac \psi c \right) \]
Integrate with respect to $s$ gives us
\[ f(s) = \frac 12 \phi(s) + \frac 1{2c} \int_0^s \psi + A \qquad f(s) = \frac 12 \phi(s) - \frac 1{2c} \int_0^s \psi + B\]
where $A,B$ are constants. Since $\phi(x) = f(x) + g(x)$, we have $A + B = 0$. Let $s = x + ct$ and $s = x - ct$ we get
\[u(x, t)=\frac{1}{2} \phi(x+c t)+\frac{1}{2 c} \int_{0}^{x+c t} \psi+\frac{1}{2} \phi(x-c t)-\frac{1}{2 c} \int_{0}^{x-c t} \psi\]
which is reduced to
\[ \boxed{u(x,t) = \frac12 \left[ \phi(x + ct) + \phi(x - ct) \right] + \frac 1 {2c} \int_{x - ct}^{x + ct} \psi(s) d(s)}\]
\begin{example}
Take $\phi = 0$ and $\psi = \cos x$. Solve for the wave equation.
\end{example}
\subsection{Causality and Energy}
{\huge TODO}
\subsubsection{The Diffusion Equation}
\begin{problem}
We want to study the behavior of \[ u_t = ku_{xx}.\]
\end{problem}
\begin{theorem}[The Maximum Principle]
If $u(x,t)$ that satisfies the diffusion equation in a rectangle $(0 \leq x \leq l, o \leq t \leq T)$.
\begin{center}
\begin{tikzpicture}
\filldraw[color=red!60, fill=red!5, very thick] (0,0) -- (2.5,0) -- (2.5,3) -- (0,3) -- (0,0);
\draw[->, ultra thick] (-1,0) -- (4,0);
\draw[->, ultra thick] (0,-1) -- (0,4);
\node at (4,0.5) {$x$};
\node at (0.5,4) {$t$};
\draw[thick] (2.5,0) -- (2.5,3);
\draw[thick] (0,3) -- (2.5,3);
\node at (-1,1.5) {$x = 0$};
\node at (3.5,1.5) {$x = l$};
\node at (1.25, 1.5) {\footnotesize $u_t - ku_{xx} = 0$};
\end{tikzpicture}
\end{center}
then the maximum value of $u(x,t)$ is assumed either initially at $t = 0$ or on the lateral bounding at $x = 0$ or $x = l$.
\end{theorem}
\begin{remark}
\begin{enumerate}
\item This is called the \textbf{weak} maximum principle. The \textbf{strong} maximum principle asserts that the maximum value of $u$ cannot occur in the interior (unless $u$ is constant)
\item The same results hold for minimum (simple solve for $-u(x,t)$ will show).
\item The are no `hot spots'
\end{enumerate}
\end{remark}
\begin{proof}[Idea of the proof]
By contradiction, we want to assume that $u$ attains it maximum value at an interior $(x_0, t_0)$. Then by calculus at $(x_0, t_0)$ we have
\[ u_t = 0, \quad u_x = 0, \quad u_{xx} \leq 0\]
If we know that $u_{xx}(x_0, t_0) \neq 0$ then $u_{xx} (x_0 ,t_0) \leq 0$, so $u_{t} - k u_{xx} > 0$. A contradiction.
\end{proof}
\begin{proof}
The $M$ denote the maximum of $u$ on the rectangle. We want to show $u \leq M$ for all points $(x_0,t_0)$ in rectangle. Let $\varepsilon > 0$ be fixed, and define
\[ v(x,t) := u(x,t) + \varepsilon x^2\]
\textit{Goal:} Show $v(x,t) \leq M + \varepsilon l^2$ in $\b R$. This is enough since the equation above will imply $u(x,t) \leq M + \varepsilon (l^2 - x^2)$ in $\b R$. As this holds for any $\varepsilon > 0$, this implies $u(x,t) \leq M$ in $\b R$. \\
We have two things to do
\begin{enumerate}
\item Note that on the rectangle $u(x,t) \leq M + \varepsilon l^2$.
\item $v$ satisfies the diffusion inequality
\[ u_t - ku_xx = \underbrace{u_t - ku_{xx}}_{ = 0 \,\, \text{by def. of } u} - 2 \varepsilon k = -2\varepsilon k < 0.\]
\item \begin{enumerate}
\item Now suppose for a contradiction that $v(x,t)$ attains its maximum value at an \textbf{interior} point $(x_0, t_0)$ o f$\b R$. i.e,
\[ 0 < x_0 < l \quad \mathrm{and} \quad 0 < t_0 < T\]
By calculus at $(x_0, t_0)$ we have
\[ v_t = 0, \quad v_x = 0, \quad v_{xx} \leq 0.\]
Hence at $(x_0, t_0)$
\[ v_t - kv_{xx} = o - kv_{xx} \geq 0,\]
a contradiction.
\item Suppose $u$ attain its maximum at final time, the top edge of $\b R$.
\[ 0 < x_0 < l \quad \mathrm{and} \quad t_0 = T\]
Then again by calculus at $(x_0, t_0)$ we have $v_t \geq 0, v_x = 0, v_{xx} \leq 0$. Hence $v_t - k v_{xx} \geq 0$, a contradiction.
\end{enumerate}
\end{enumerate}
\end{proof}
\begin{theorem}
Given set of $,f,g,h, \phi$, there exists at most one solution of
\[ \left\{ \begin{array}{rl}
u_t - k u_{xx} &= f(x,t) \quad \mathrm{for} \,\, 0 < x < l, t > 0 \\
u(x,0) &= \phi(x) \\
u(0,t) &= g(t) \\
u(l,t) &= h(t)
\end{array} \right. \]
\end{theorem}
\begin{proof}
Let $u_1,u_2$ be two solutions of $f,g,h, \phi$. We want to show that $u_1= u_2$. Define $w := u_1 - u_2$. Then
\[ \left\{ \begin{array}{rl}
w_t - k w_{xx} &= f(x,t) \quad \mathrm{for} \,\, 0 < x < l, t > 0 \\
w(x,0) &= \phi(x) \\
w(0,t) &= g(t) \\
w(l,t) &= h(t)
\end{array} \right. \]
Let $T > 0$, then by the maximum principle
\[ w(x,t) \leq 0 \quad \text{for all} \quad 0 < x < l, 0 < t <T.\] Also by the maximum principle
\[ w(x,t) \geq 0\]
so $w(x,t) = 0$ for all $0 < x < l, 0 < t< T$. Since $T > 0$ is arbitrary, $u_1 = u_2$.
\end{proof}
Given $f,g,h, \phi_1, \phi_2$,and suppose $u_1, u_2$ solves the diffusion equation with respect with $\phi_1$ and $\phi_2$ thne
\[ \max_{0 \leq x \leq l} \left| u_1(x,t) - u_2(x,t)\right| \leq \max_{0 \leq x \leq l} \left| \phi(x) - \phi_2(x)\right| \quad \forall t > 0.\]
\end{theorem}
\begin{proof}
{\huge TODO}
\end{proof}