-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
munit.py
288 lines (239 loc) · 10.8 KB
/
munit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import argparse
import os
import numpy as np
import math
import itertools
import datetime
import time
import sys
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
from models import *
from datasets import *
import torch.nn as nn
import torch.nn.functional as F
import torch
parser = argparse.ArgumentParser()
parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from")
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--dataset_name", type=str, default="edges2shoes", help="name of the dataset")
parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0001, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_height", type=int, default=128, help="size of image height")
parser.add_argument("--img_width", type=int, default=128, help="size of image width")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval saving generator samples")
parser.add_argument("--checkpoint_interval", type=int, default=-1, help="interval between saving model checkpoints")
parser.add_argument("--n_downsample", type=int, default=2, help="number downsampling layers in encoder")
parser.add_argument("--n_residual", type=int, default=3, help="number of residual blocks in encoder / decoder")
parser.add_argument("--dim", type=int, default=64, help="number of filters in first encoder layer")
parser.add_argument("--style_dim", type=int, default=8, help="dimensionality of the style code")
opt = parser.parse_args()
print(opt)
cuda = torch.cuda.is_available()
# Create sample and checkpoint directories
os.makedirs("images/%s" % opt.dataset_name, exist_ok=True)
os.makedirs("saved_models/%s" % opt.dataset_name, exist_ok=True)
criterion_recon = torch.nn.L1Loss()
# Initialize encoders, generators and discriminators
Enc1 = Encoder(dim=opt.dim, n_downsample=opt.n_downsample, n_residual=opt.n_residual, style_dim=opt.style_dim)
Dec1 = Decoder(dim=opt.dim, n_upsample=opt.n_downsample, n_residual=opt.n_residual, style_dim=opt.style_dim)
Enc2 = Encoder(dim=opt.dim, n_downsample=opt.n_downsample, n_residual=opt.n_residual, style_dim=opt.style_dim)
Dec2 = Decoder(dim=opt.dim, n_upsample=opt.n_downsample, n_residual=opt.n_residual, style_dim=opt.style_dim)
D1 = MultiDiscriminator()
D2 = MultiDiscriminator()
if cuda:
Enc1 = Enc1.cuda()
Dec1 = Dec1.cuda()
Enc2 = Enc2.cuda()
Dec2 = Dec2.cuda()
D1 = D1.cuda()
D2 = D2.cuda()
criterion_recon.cuda()
if opt.epoch != 0:
# Load pretrained models
Enc1.load_state_dict(torch.load("saved_models/%s/Enc1_%d.pth" % (opt.dataset_name, opt.epoch)))
Dec1.load_state_dict(torch.load("saved_models/%s/Dec1_%d.pth" % (opt.dataset_name, opt.epoch)))
Enc2.load_state_dict(torch.load("saved_models/%s/Enc2_%d.pth" % (opt.dataset_name, opt.epoch)))
Dec2.load_state_dict(torch.load("saved_models/%s/Dec2_%d.pth" % (opt.dataset_name, opt.epoch)))
D1.load_state_dict(torch.load("saved_models/%s/D1_%d.pth" % (opt.dataset_name, opt.epoch)))
D2.load_state_dict(torch.load("saved_models/%s/D2_%d.pth" % (opt.dataset_name, opt.epoch)))
else:
# Initialize weights
Enc1.apply(weights_init_normal)
Dec1.apply(weights_init_normal)
Enc2.apply(weights_init_normal)
Dec2.apply(weights_init_normal)
D1.apply(weights_init_normal)
D2.apply(weights_init_normal)
# Loss weights
lambda_gan = 1
lambda_id = 10
lambda_style = 1
lambda_cont = 1
lambda_cyc = 0
# Optimizers
optimizer_G = torch.optim.Adam(
itertools.chain(Enc1.parameters(), Dec1.parameters(), Enc2.parameters(), Dec2.parameters()),
lr=opt.lr,
betas=(opt.b1, opt.b2),
)
optimizer_D1 = torch.optim.Adam(D1.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D2 = torch.optim.Adam(D2.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
# Learning rate update schedulers
lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR(
optimizer_G, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step
)
lr_scheduler_D1 = torch.optim.lr_scheduler.LambdaLR(
optimizer_D1, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step
)
lr_scheduler_D2 = torch.optim.lr_scheduler.LambdaLR(
optimizer_D2, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step
)
Tensor = torch.cuda.FloatTensor if cuda else torch.Tensor
# Configure dataloaders
transforms_ = [
transforms.Resize((opt.img_height, opt.img_width), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
dataloader = DataLoader(
ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_),
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
)
val_dataloader = DataLoader(
ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_, mode="val"),
batch_size=5,
shuffle=True,
num_workers=1,
)
def sample_images(batches_done):
"""Saves a generated sample from the validation set"""
imgs = next(iter(val_dataloader))
img_samples = None
for img1, img2 in zip(imgs["A"], imgs["B"]):
# Create copies of image
X1 = img1.unsqueeze(0).repeat(opt.style_dim, 1, 1, 1)
X1 = Variable(X1.type(Tensor))
# Get random style codes
s_code = np.random.uniform(-1, 1, (opt.style_dim, opt.style_dim))
s_code = Variable(Tensor(s_code))
# Generate samples
c_code_1, _ = Enc1(X1)
X12 = Dec2(c_code_1, s_code)
# Concatenate samples horisontally
X12 = torch.cat([x for x in X12.data.cpu()], -1)
img_sample = torch.cat((img1, X12), -1).unsqueeze(0)
# Concatenate with previous samples vertically
img_samples = img_sample if img_samples is None else torch.cat((img_samples, img_sample), -2)
save_image(img_samples, "images/%s/%s.png" % (opt.dataset_name, batches_done), nrow=5, normalize=True)
# ----------
# Training
# ----------
# Adversarial ground truths
valid = 1
fake = 0
prev_time = time.time()
for epoch in range(opt.epoch, opt.n_epochs):
for i, batch in enumerate(dataloader):
# Set model input
X1 = Variable(batch["A"].type(Tensor))
X2 = Variable(batch["B"].type(Tensor))
# Sampled style codes
style_1 = Variable(torch.randn(X1.size(0), opt.style_dim, 1, 1).type(Tensor))
style_2 = Variable(torch.randn(X1.size(0), opt.style_dim, 1, 1).type(Tensor))
# -------------------------------
# Train Encoders and Generators
# -------------------------------
optimizer_G.zero_grad()
# Get shared latent representation
c_code_1, s_code_1 = Enc1(X1)
c_code_2, s_code_2 = Enc2(X2)
# Reconstruct images
X11 = Dec1(c_code_1, s_code_1)
X22 = Dec2(c_code_2, s_code_2)
# Translate images
X21 = Dec1(c_code_2, style_1)
X12 = Dec2(c_code_1, style_2)
# Cycle translation
c_code_21, s_code_21 = Enc1(X21)
c_code_12, s_code_12 = Enc2(X12)
X121 = Dec1(c_code_12, s_code_1) if lambda_cyc > 0 else 0
X212 = Dec2(c_code_21, s_code_2) if lambda_cyc > 0 else 0
# Losses
loss_GAN_1 = lambda_gan * D1.compute_loss(X21, valid)
loss_GAN_2 = lambda_gan * D2.compute_loss(X12, valid)
loss_ID_1 = lambda_id * criterion_recon(X11, X1)
loss_ID_2 = lambda_id * criterion_recon(X22, X2)
loss_s_1 = lambda_style * criterion_recon(s_code_21, style_1)
loss_s_2 = lambda_style * criterion_recon(s_code_12, style_2)
loss_c_1 = lambda_cont * criterion_recon(c_code_12, c_code_1.detach())
loss_c_2 = lambda_cont * criterion_recon(c_code_21, c_code_2.detach())
loss_cyc_1 = lambda_cyc * criterion_recon(X121, X1) if lambda_cyc > 0 else 0
loss_cyc_2 = lambda_cyc * criterion_recon(X212, X2) if lambda_cyc > 0 else 0
# Total loss
loss_G = (
loss_GAN_1
+ loss_GAN_2
+ loss_ID_1
+ loss_ID_2
+ loss_s_1
+ loss_s_2
+ loss_c_1
+ loss_c_2
+ loss_cyc_1
+ loss_cyc_2
)
loss_G.backward()
optimizer_G.step()
# -----------------------
# Train Discriminator 1
# -----------------------
optimizer_D1.zero_grad()
loss_D1 = D1.compute_loss(X1, valid) + D1.compute_loss(X21.detach(), fake)
loss_D1.backward()
optimizer_D1.step()
# -----------------------
# Train Discriminator 2
# -----------------------
optimizer_D2.zero_grad()
loss_D2 = D2.compute_loss(X2, valid) + D2.compute_loss(X12.detach(), fake)
loss_D2.backward()
optimizer_D2.step()
# --------------
# Log Progress
# --------------
# Determine approximate time left
batches_done = epoch * len(dataloader) + i
batches_left = opt.n_epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
# Print log
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f] ETA: %s"
% (epoch, opt.n_epochs, i, len(dataloader), (loss_D1 + loss_D2).item(), loss_G.item(), time_left)
)
# If at sample interval save image
if batches_done % opt.sample_interval == 0:
sample_images(batches_done)
# Update learning rates
lr_scheduler_G.step()
lr_scheduler_D1.step()
lr_scheduler_D2.step()
if opt.checkpoint_interval != -1 and epoch % opt.checkpoint_interval == 0:
# Save model checkpoints
torch.save(Enc1.state_dict(), "saved_models/%s/Enc1_%d.pth" % (opt.dataset_name, epoch))
torch.save(Dec1.state_dict(), "saved_models/%s/Dec1_%d.pth" % (opt.dataset_name, epoch))
torch.save(Enc2.state_dict(), "saved_models/%s/Enc2_%d.pth" % (opt.dataset_name, epoch))
torch.save(Dec2.state_dict(), "saved_models/%s/Dec2_%d.pth" % (opt.dataset_name, epoch))
torch.save(D1.state_dict(), "saved_models/%s/D1_%d.pth" % (opt.dataset_name, epoch))
torch.save(D2.state_dict(), "saved_models/%s/D2_%d.pth" % (opt.dataset_name, epoch))