-
Notifications
You must be signed in to change notification settings - Fork 4
/
autopgd_train.py
342 lines (273 loc) · 12.1 KB
/
autopgd_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import random
#from autopgd_base import L1_projection
from other_utils import L1_norm, L2_norm, L0_norm
def L1_projection(x2, y2, eps1):
'''
x2: center of the L1 ball (bs x input_dim)
y2: current perturbation (x2 + y2 is the point to be projected)
eps1: radius of the L1 ball
output: delta s.th. ||y2 + delta||_1 = eps1
and 0 <= x2 + y2 + delta <= 1
'''
x = x2.clone().float().view(x2.shape[0], -1)
y = y2.clone().float().view(y2.shape[0], -1)
sigma = y.clone().sign()
u = torch.min(1 - x - y, x + y)
#u = torch.min(u, epsinf - torch.clone(y).abs())
u = torch.min(torch.zeros_like(y), u)
l = -torch.clone(y).abs()
d = u.clone()
bs, indbs = torch.sort(-torch.cat((u, l), 1), dim=1)
bs2 = torch.cat((bs[:, 1:], torch.zeros(bs.shape[0], 1).to(bs.device)), 1)
inu = 2*(indbs < u.shape[1]).float() - 1
size1 = inu.cumsum(dim=1)
s1 = -u.sum(dim=1)
c = eps1 - y.clone().abs().sum(dim=1)
c5 = s1 + c < 0
c2 = c5.nonzero().squeeze(1)
s = s1.unsqueeze(-1) + torch.cumsum((bs2 - bs) * size1, dim=1)
#print(s[0])
#print(c5.shape, c2)
if c2.nelement != 0:
lb = torch.zeros_like(c2).float()
ub = torch.ones_like(lb) *(bs.shape[1] - 1)
#print(c2.shape, lb.shape)
nitermax = torch.ceil(torch.log2(torch.tensor(bs.shape[1]).float()))
counter2 = torch.zeros_like(lb).long()
counter = 0
while counter < nitermax:
counter4 = torch.floor((lb + ub) / 2.)
counter2 = counter4.type(torch.LongTensor)
c8 = s[c2, counter2] + c[c2] < 0
ind3 = c8.nonzero().squeeze(1)
ind32 = (~c8).nonzero().squeeze(1)
#print(ind3.shape)
if ind3.nelement != 0:
lb[ind3] = counter4[ind3]
if ind32.nelement != 0:
ub[ind32] = counter4[ind32]
#print(lb, ub)
counter += 1
lb2 = lb.long()
alpha = (-s[c2, lb2] -c[c2]) / size1[c2, lb2 + 1] + bs2[c2, lb2]
d[c2] = -torch.min(torch.max(-u[c2], alpha.unsqueeze(-1)), -l[c2])
return (sigma * d).view(x2.shape)
def dlr_loss(x, y, reduction='none'):
x_sorted, ind_sorted = x.sort(dim=1)
ind = (ind_sorted[:, -1] == y).float()
return -(x[torch.arange(x.shape[0]), y] - x_sorted[:, -2] * ind - \
x_sorted[:, -1] * (1. - ind)) / (x_sorted[:, -1] - x_sorted[:, -3] + 1e-12)
def dlr_loss_targeted(x, y, y_target):
x_sorted, ind_sorted = x.sort(dim=1)
u = torch.arange(x.shape[0])
return -(x[u, y] - x[u, y_target]) / (x_sorted[:, -1] - .5 * (
x_sorted[:, -3] + x_sorted[:, -4]) + 1e-12)
criterion_dict = {'ce': lambda x, y: F.cross_entropy(x, y, reduction='none'),
'dlr': dlr_loss, 'dlr-targeted': dlr_loss_targeted}
def check_oscillation(x, j, k, y5, k3=0.75):
t = torch.zeros(x.shape[1]).to(x.device)
for counter5 in range(k):
t += (x[j - counter5] > x[j - counter5 - 1]).float()
return (t <= k * k3 * torch.ones_like(t)).float()
def apgd_train(model, x, y, norm, eps, n_iter=10, use_rs=False, loss='ce',
verbose=False, is_train=True):
assert not model.training
device = x.device
ndims = len(x.shape) - 1
if not use_rs:
x_adv = x.clone()
else:
raise NotImplemented
if norm == 'Linf':
t = torch.rand_like(x)
x_adv = x_adv.clamp(0., 1.)
x_best = x_adv.clone()
x_best_adv = x_adv.clone()
loss_steps = torch.zeros([n_iter, x.shape[0]], device=device)
loss_best_steps = torch.zeros([n_iter + 1, x.shape[0]], device=device)
acc_steps = torch.zeros_like(loss_best_steps)
# set loss
criterion_indiv = criterion_dict[loss]
# set params
n_fts = math.prod(x.shape[1:])
if norm in ['Linf', 'L2']:
n_iter_2 = max(int(0.22 * n_iter), 1)
n_iter_min = max(int(0.06 * n_iter), 1)
size_decr = max(int(0.03 * n_iter), 1)
k = n_iter_2 + 0
thr_decr = .75
alpha = 2.
elif norm in ['L1']:
k = max(int(.04 * n_iter), 1)
init_topk = .05 if is_train else .2
topk = init_topk * torch.ones([x.shape[0]], device=device)
sp_old = n_fts * torch.ones_like(topk)
adasp_redstep = 1.5
adasp_minstep = 10.
alpha = 1.
step_size = alpha * eps * torch.ones([x.shape[0], *[1] * ndims],
device=device)
counter3 = 0
x_adv.requires_grad_()
#grad = torch.zeros_like(x)
#for _ in range(self.eot_iter)
#with torch.enable_grad()
logits = model(x_adv)
loss_indiv = criterion_indiv(logits, y)
loss = loss_indiv.sum()
#grad += torch.autograd.grad(loss, [x_adv])[0].detach()
grad = torch.autograd.grad(loss, [x_adv])[0].detach()
#grad /= float(self.eot_iter)
grad_best = grad.clone()
x_adv.detach_()
loss_indiv.detach_()
loss.detach_()
acc = logits.detach().max(1)[1] == y
acc_steps[0] = acc + 0
loss_best = loss_indiv.detach().clone()
loss_best_last_check = loss_best.clone()
reduced_last_check = torch.ones_like(loss_best)
n_reduced = 0
u = torch.arange(x.shape[0], device=device)
x_adv_old = x_adv.clone().detach()
for i in range(n_iter):
### gradient step
if True: #with torch.no_grad()
x_adv = x_adv.detach()
grad2 = x_adv - x_adv_old
x_adv_old = x_adv.clone()
loss_curr = loss.detach().mean()
a = 0.75 if i > 0 else 1.0
if norm == 'Linf':
x_adv_1 = x_adv + step_size * torch.sign(grad)
x_adv_1 = torch.clamp(torch.min(torch.max(x_adv_1,
x - eps), x + eps), 0.0, 1.0)
x_adv_1 = torch.clamp(torch.min(torch.max(
x_adv + (x_adv_1 - x_adv) * a + grad2 * (1 - a),
x - eps), x + eps), 0.0, 1.0)
elif norm == 'L2':
x_adv_1 = x_adv + step_size * grad / (L2_norm(grad,
keepdim=True) + 1e-12)
x_adv_1 = torch.clamp(x + (x_adv_1 - x) / (L2_norm(x_adv_1 - x,
keepdim=True) + 1e-12) * torch.min(eps * torch.ones_like(x),
L2_norm(x_adv_1 - x, keepdim=True)), 0.0, 1.0)
x_adv_1 = x_adv + (x_adv_1 - x_adv) * a + grad2 * (1 - a)
x_adv_1 = torch.clamp(x + (x_adv_1 - x) / (L2_norm(x_adv_1 - x,
keepdim=True) + 1e-12) * torch.min(eps * torch.ones_like(x),
L2_norm(x_adv_1 - x, keepdim=True)), 0.0, 1.0)
elif norm == 'L1':
grad_topk = grad.abs().view(x.shape[0], -1).sort(-1)[0]
topk_curr = torch.clamp((1. - topk) * n_fts, min=0, max=n_fts - 1).long()
grad_topk = grad_topk[u, topk_curr].view(-1, *[1]*(len(x.shape) - 1))
sparsegrad = grad * (grad.abs() >= grad_topk).float()
x_adv_1 = x_adv + step_size * sparsegrad.sign() / (
sparsegrad.sign().abs().view(x.shape[0], -1).sum(dim=-1).view(
-1, 1, 1, 1) + 1e-10)
delta_u = x_adv_1 - x
delta_p = L1_projection(x, delta_u, eps)
x_adv_1 = x + delta_u + delta_p
elif norm == 'L0':
L1normgrad = grad / (grad.abs().view(grad.shape[0], -1).sum(
dim=-1, keepdim=True) + 1e-12).view(grad.shape[0], *[1]*(
len(grad.shape) - 1))
x_adv_1 = x_adv + step_size * L1normgrad * n_fts
x_adv_1 = L0_projection(x_adv_1, x, eps)
# TODO: add momentum
x_adv = x_adv_1 + 0.
### get gradient
x_adv.requires_grad_()
#grad = torch.zeros_like(x)
#for _ in range(self.eot_iter)
#with torch.enable_grad()
logits = model(x_adv)
loss_indiv = criterion_indiv(logits, y)
loss = loss_indiv.sum()
#grad += torch.autograd.grad(loss, [x_adv])[0].detach()
if i < n_iter - 1:
# save one backward pass
grad = torch.autograd.grad(loss, [x_adv])[0].detach()
#grad /= float(self.eot_iter)
x_adv.detach_()
loss_indiv.detach_()
loss.detach_()
pred = logits.detach().max(1)[1] == y
acc = torch.min(acc, pred)
acc_steps[i + 1] = acc + 0
ind_pred = (pred == 0).nonzero().squeeze()
x_best_adv[ind_pred] = x_adv[ind_pred] + 0.
if verbose:
str_stats = ' - step size: {:.5f} - topk: {:.2f}'.format(
step_size.mean(), topk.mean() * n_fts) if norm in ['L1'] else ' - step size: {:.5f}'.format(
step_size.mean())
print('iteration: {} - best loss: {:.6f} curr loss {:.6f} - robust accuracy: {:.2%}{}'.format(
i, loss_best.sum(), loss_curr, acc.float().mean(), str_stats))
#print('pert {}'.format((x - x_best_adv).abs().view(x.shape[0], -1).sum(-1).max()))
### check step size
if True: #with torch.no_grad()
y1 = loss_indiv.detach().clone()
loss_steps[i] = y1 + 0
ind = (y1 > loss_best).nonzero().squeeze()
x_best[ind] = x_adv[ind].clone()
grad_best[ind] = grad[ind].clone()
loss_best[ind] = y1[ind] + 0
loss_best_steps[i + 1] = loss_best + 0
counter3 += 1
if counter3 == k:
if norm in ['Linf', 'L2']:
fl_oscillation = check_oscillation(loss_steps, i, k,
loss_best, k3=thr_decr)
fl_reduce_no_impr = (1. - reduced_last_check) * (
loss_best_last_check >= loss_best).float()
fl_oscillation = torch.max(fl_oscillation,
fl_reduce_no_impr)
reduced_last_check = fl_oscillation.clone()
loss_best_last_check = loss_best.clone()
if fl_oscillation.sum() > 0:
ind_fl_osc = (fl_oscillation > 0).nonzero().squeeze()
step_size[ind_fl_osc] /= 2.0
n_reduced = fl_oscillation.sum()
x_adv[ind_fl_osc] = x_best[ind_fl_osc].clone()
grad[ind_fl_osc] = grad_best[ind_fl_osc].clone()
counter3 = 0
k = max(k - size_decr, n_iter_min)
elif norm == 'L1':
# adjust sparsity
sp_curr = L0_norm(x_best - x)
fl_redtopk = (sp_curr / sp_old) < .95
topk = sp_curr / n_fts / 1.5
step_size[fl_redtopk] = alpha * eps
step_size[~fl_redtopk] /= adasp_redstep
step_size.clamp_(alpha * eps / adasp_minstep, alpha * eps)
sp_old = sp_curr.clone()
x_adv[fl_redtopk] = x_best[fl_redtopk].clone()
grad[fl_redtopk] = grad_best[fl_redtopk].clone()
counter3 = 0
return x_best, acc, loss_best, x_best_adv
if __name__ == '__main__':
#pass
from train_new import parse_args
from data import load_anydataset
from utils_eval import check_imgs, load_anymodel_datasets, clean_accuracy
args = parse_args()
args.training_set = False
x_test, y_test = load_anydataset(args, device='cpu')
x, y = x_test.cuda(), y_test.cuda()
model, l_models = load_anymodel_datasets(args)
assert not model.training
if args.attack == 'apgd_train':
#with torch.no_grad()
x_best, acc, _, x_adv = apgd_train(model, x, y, norm=args.norm,
eps=args.eps, n_iter=args.n_iter, verbose=True, loss='ce')
check_imgs(x_adv, x, args.norm)
elif args.attack == 'apgd_test':
from autoattack import AutoAttack
adversary = AutoAttack(model, norm=args.norm, eps=args.eps)
#adversary.attacks_to_run = ['apgd-ce']
#adversary.apgd.verbose = True
with torch.no_grad():
x_adv = adversary.run_standard_evaluation(x, y, bs=1000)
check_imgs(x_adv, x, args.norm)