-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
710 lines (558 loc) · 29.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
import yfinance as yf
import pandas as pd
import ta
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error, r2_score
import xgboost as xgb
from catboost import CatBoostRegressor
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from sklearn.preprocessing import MinMaxScaler
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.statespace.sarimax import SARIMAX
from logger import get_logger
logger = get_logger(__name__)
# logger.setLevel(logging.DEBUG)
# handler = logging.StreamHandler()
# handler.setLevel(logging.DEBUG)
# formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# handler.setFormatter(formatter)
# logger.addHandler(handler)
# # Example usage of logger
# logger.info("This is an info message")
# Fetch historical data
def fetch_data(ticker, start_date, end_date):
logger.info(f"Fetching data for {ticker} from {start_date} to {end_date}")
data = yf.download(ticker, start=start_date, end=end_date)
if data.empty:
logger.warning(f"No data returned for {ticker}.")
return None
# Reset index to ensure Date is a column
data.reset_index(inplace=True)
logger.info(f"Data fetched successfully for {ticker}.")
return data
def calculate_indicators(data: pd.DataFrame) -> pd.DataFrame:
logger.info("Calculating indicators with fixed parameters.")
# Check if required columns are present
required_columns = ['Close', 'High', 'Low', 'Volume']
missing_columns = [col for col in required_columns if col not in data.columns]
if missing_columns:
logger.error(f"Missing columns in data: {', '.join(missing_columns)}")
raise KeyError(f"Missing columns in data: {', '.join(missing_columns)}")
# Calculate fixed moving averages
ma_period = 50 # Fixed period for moving averages
try:
data[f'SMA_{ma_period}'] = data['Close'].rolling(window=ma_period).mean()
data[f'EMA_{ma_period}'] = data['Close'].ewm(span=ma_period, adjust=False).mean()
except Exception as e:
logger.error(f"Error calculating moving averages: {e}")
raise
# Calculate other indicators
try:
data['RSI'] = ta.momentum.RSIIndicator(data['Close']).rsi()
macd = ta.trend.MACD(data['Close'])
data['MACD'] = macd.macd()
data['MACD_Signal'] = macd.macd_signal()
bollinger = ta.volatility.BollingerBands(data['Close'])
data['Bollinger_High'] = bollinger.bollinger_hband()
data['Bollinger_Low'] = bollinger.bollinger_lband()
data['ATR'] = ta.volatility.AverageTrueRange(data['High'], data['Low'], data['Close']).average_true_range()
data['OBV'] = ta.volume.OnBalanceVolumeIndicator(data['Close'], data['Volume']).on_balance_volume()
except Exception as e:
logger.error(f"Error calculating other indicators: {e}")
raise
# Debugging line to check the columns
logger.debug("Columns after calculating indicators: %s", data.columns)
data = data.dropna()
logger.info("Indicators calculated successfully.")
return data
# def calculate_indicators(data: pd.DataFrame, ma_type='SMA', ma_period=50) -> pd.DataFrame:
# logger.info(f"Calculating indicators with {ma_type} of period {ma_period}.")
# # Check if required columns are present
# required_columns = ['Close', 'High', 'Low', 'Volume']
# missing_columns = [col for col in required_columns if col not in data.columns]
# if missing_columns:
# logger.error(f"Missing columns in data: {', '.join(missing_columns)}")
# raise KeyError(f"Missing columns in data: {', '.join(missing_columns)}")
# # Calculate moving averages
# if ma_type == 'SMA':
# data[f'SMA_{ma_period}'] = data['Close'].rolling(window=ma_period).mean()
# elif ma_type == 'EMA':
# data[f'EMA_{ma_period}'] = data['Close'].ewm(span=ma_period, adjust=False).mean()
# else:
# logger.error(f"Unknown moving average type: {ma_type}")
# raise ValueError(f"Unknown moving average type: {ma_type}")
# # Calculate other indicators
# try:
# data['RSI'] = ta.momentum.RSIIndicator(data['Close']).rsi()
# macd = ta.trend.MACD(data['Close'])
# data['MACD'] = macd.macd()
# data['MACD_Signal'] = macd.macd_signal()
# bollinger = ta.volatility.BollingerBands(data['Close'])
# data['Bollinger_High'] = bollinger.bollinger_hband()
# data['Bollinger_Low'] = bollinger.bollinger_lband()
# data['ATR'] = ta.volatility.AverageTrueRange(data['High'], data['Low'], data['Close']).average_true_range()
# data['OBV'] = ta.volume.OnBalanceVolumeIndicator(data['Close'], data['Volume']).on_balance_volume()
# except Exception as e:
# logger.error(f"Error calculating indicators: {e}")
# raise
# Debugging line to check the columns
logger.debug("Columns after calculating indicators: %s", data.columns)
data = data.dropna()
logger.info("Indicators calculated successfully.")
return data
# # Calculate technical indicators
# def calculate_indicators(data, ma_type='SMA', ma_period=50):
# logger.info(f"Calculating indicators with {ma_type} of period {ma_period}.")
# if ma_type == 'SMA':
# data[f'SMA_{ma_period}'] = data['Close'].rolling(window=ma_period).mean()
# elif ma_type == 'EMA':
# data[f'EMA_{ma_period}'] = data['Close'].ewm(span=ma_period, adjust=False).mean()
# data['RSI'] = ta.momentum.RSIIndicator(data['Close']).rsi()
# macd = ta.trend.MACD(data['Close'])
# data['MACD'] = macd.macd()
# data['MACD_Signal'] = macd.macd_signal()
# bollinger = ta.volatility.BollingerBands(data['Close'])
# data['Bollinger_High'] = bollinger.bollinger_hband()
# data['Bollinger_Low'] = bollinger.bollinger_lband()
# data['ATR'] = ta.volatility.AverageTrueRange(data['High'], data['Low'], data['Close']).average_true_range()
# data['OBV'] = ta.volume.OnBalanceVolumeIndicator(data['Close'], data['Volume']).on_balance_volume()
# # Debugging line to check the columns
# logger.debug("Columns after calculating indicators: %s", data.columns)
# data = data.dropna()
# logger.info("Indicators calculated successfully.")
# return data
# Calculate support and resistance levels
def calculate_support_resistance(data, window=30):
logger.info(f"Calculating support and resistance with a window of {window}.")
recent_data = data.tail(window)
rolling_max = data['Close'].rolling(window=window).max()
rolling_min = data['Close'].rolling(window=window).min()
recent_max = recent_data['Close'].max()
recent_min = recent_data['Close'].min()
support = min(rolling_min.iloc[-1], recent_min)
resistance = max(rolling_max.iloc[-1], recent_max)
logger.debug("Support: %f, Resistance: %f", support, resistance)
return support, resistance
# Prepare data for LSTM model
def prepare_lstm_data(data):
logger.info("Preparing data for LSTM model.")
features = data[['Open', 'SMA_50', 'EMA_50', 'RSI', 'MACD', 'MACD_Signal', 'Bollinger_High', 'Bollinger_Low', 'ATR', 'OBV']].values
target = data['Close'].values
scaler = MinMaxScaler()
features = scaler.fit_transform(features)
X, y = [], []
for i in range(len(features) - 60):
X.append(features[i:i+60])
y.append(target[i+60])
logger.info("Data preparation for LSTM completed.")
return np.array(X), np.array(y)
def predict_future_prices(data, algorithm, days=10):
logger.info(f"Predicting future prices using {algorithm}.")
# Check if required columns are present
required_columns = ['Open', 'SMA_50', 'EMA_50', 'RSI', 'MACD', 'MACD_Signal', 'Bollinger_High', 'Bollinger_Low', 'ATR', 'OBV']
missing_columns = [col for col in required_columns if col not in data.columns]
if missing_columns:
logger.error("Missing columns in data: %s", ', '.join(missing_columns))
raise KeyError(f"Missing columns in data: {', '.join(missing_columns)}")
features = data[required_columns]
target = data['Close']
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)
mae, r2 = None, None # Initialize variables for metrics
if algorithm == 'Linear Regression':
model = LinearRegression()
elif algorithm == 'Decision Tree':
model = DecisionTreeRegressor()
elif algorithm == 'Random Forest':
model = RandomForestRegressor(n_estimators=100)
elif algorithm == 'XGBoost':
model = xgb.XGBRegressor(objective='reg:squarederror', eval_metric='rmse')
elif algorithm == 'CatBoost':
model = CatBoostRegressor(learning_rate=0.1, depth=6, iterations=500, verbose=0)
elif algorithm == 'LSTM':
X, y = prepare_lstm_data(data)
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(X.shape[1], X.shape[2])))
model.add(LSTM(50))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(X, y, epochs=10, batch_size=32, verbose=0)
last_data_point = np.expand_dims(X[-1], axis=0)
future_prices = [model.predict(last_data_point)[0][0] for _ in range(days)]
logger.info("Future prices predicted using LSTM model.")
return future_prices, None, None, None, None
elif algorithm == 'ARIMA':
model = ARIMA(data['Close'], order=(5, 1, 0))
model_fit = model.fit()
future_prices = model_fit.forecast(steps=days)
elif algorithm == 'SARIMA':
model = SARIMAX(data['Close'], order=(5, 1, 0), seasonal_order=(1, 1, 0, 12))
model_fit = model.fit()
future_prices = model_fit.forecast(steps=days)
else:
logger.error("Algorithm not recognized: %s", algorithm)
return None, None, None, None, None
if algorithm in ['Linear Regression', 'Decision Tree', 'Random Forest', 'XGBoost', 'CatBoost']:
model.fit(X_train, y_train)
predictions = model.predict(X_test)
mae = mean_absolute_error(y_test, predictions)
r2 = r2_score(y_test, predictions)
future_prices = []
last_data_point = features.iloc[-1].values.reshape(1, -1) # Ensure it's 2D
for _ in range(days):
future_price = model.predict(last_data_point)[0]
future_prices.append(future_price)
last_data_point = last_data_point + 1 # Update last data point (simplified, better methods should be used)
logger.info("Future prices predicted using %s model.", algorithm)
return future_prices, mae, r2, None, None
# def predict_future_prices(data, algorithm, days=10):
# logger.info(f"Predicting future prices using {algorithm}.")
# # Check if required columns are present
# required_columns = ['Open', 'SMA_50', 'EMA_50', 'RSI', 'MACD', 'MACD_Signal', 'Bollinger_High', 'Bollinger_Low', 'ATR', 'OBV']
# missing_columns = [col for col in required_columns if col not in data.columns]
# if missing_columns:
# logger.error("Missing columns in data: %s", ', '.join(missing_columns))
# raise KeyError(f"Missing columns in data: {', '.join(missing_columns)}")
# features = data[required_columns]
# target = data['Close']
# X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)
# if algorithm == 'Linear Regression':
# model = LinearRegression()
# elif algorithm == 'Decision Tree':
# model = DecisionTreeRegressor()
# elif algorithm == 'Random Forest':
# model = RandomForestRegressor(n_estimators=100)
# elif algorithm == 'XGBoost':
# model = xgb.XGBRegressor(objective='reg:squarederror', eval_metric='rmse')
# elif algorithm == 'CatBoost':
# model = CatBoostRegressor(learning_rate=0.1, depth=6, iterations=500, verbose=0)
# elif algorithm == 'LSTM':
# X, y = prepare_lstm_data(data)
# model = Sequential()
# model.add(LSTM(50, return_sequences=True, input_shape=(X.shape[1], X.shape[2])))
# model.add(LSTM(50))
# model.add(Dense(1))
# model.compile(optimizer='adam', loss='mean_squared_error')
# model.fit(X, y, epochs=10, batch_size=32, verbose=0)
# last_data_point = np.expand_dims(X[-1], axis=0)
# future_prices = [model.predict(last_data_point)[0][0] for _ in range(days)]
# logger.info("Future prices predicted using LSTM model.")
# return future_prices, None, None, None, None
# elif algorithm == 'ARIMA':
# model = ARIMA(data['Close'], order=(5, 1, 0))
# model_fit = model.fit()
# future_prices = model_fit.forecast(steps=days)
# elif algorithm == 'SARIMA':
# model = SARIMAX(data['Close'], order=(5, 1, 0), seasonal_order=(1, 1, 0, 12))
# model_fit = model.fit()
# future_prices = model_fit.forecast(steps=days)
# else:
# logger.error("Algorithm not recognized: %s", algorithm)
# return None, None, None, None, None
# if algorithm in ['Linear Regression', 'Decision Tree', 'Random Forest', 'XGBoost', 'CatBoost']:
# model.fit(X_train, y_train)
# predictions = model.predict(X_test)
# mae = mean_absolute_error(y_test, predictions)
# r2 = r2_score(y_test, predictions)
# future_prices = []
# last_data_point = features.iloc[-1].values.reshape(1, -1) # Ensure it's 2D
# for _ in range(days):
# future_price = model.predict(last_data_point)[0]
# future_prices.append(future_price)
# last_data_point = last_data_point + 1 # Update last data point (simplified, better methods should be used)
# logger.info("Future prices predicted using %s model.", algorithm)
# return future_prices, mae, r2, None, None
# # Predict future prices using the selected algorithm
# def predict_future_prices(data, algorithm, days=10):
# logger.info(f"Predicting future prices using {algorithm}.")
# # Check if required columns are present
# required_columns = ['Open', 'SMA_50', 'EMA_50', 'RSI', 'MACD', 'MACD_Signal', 'Bollinger_High', 'Bollinger_Low', 'ATR', 'OBV']
# missing_columns = [col for col in required_columns if col not in data.columns]
# if missing_columns:
# logger.error("Missing columns in data: %s", ', '.join(missing_columns))
# raise KeyError(f"Missing columns in data: {', '.join(missing_columns)}")
# features = data[required_columns]
# target = data['Close']
# X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)
# if algorithm == 'Linear Regression':
# model = LinearRegression()
# elif algorithm == 'Decision Tree':
# model = DecisionTreeRegressor()
# elif algorithm == 'Random Forest':
# model = RandomForestRegressor(n_estimators=100)
# elif algorithm == 'XGBoost':
# model = xgb.XGBRegressor(objective='reg:squarederror', eval_metric='rmse')
# elif algorithm == 'CatBoost':
# model = CatBoostRegressor(learning_rate=0.1, depth=6, iterations=500, verbose=0)
# elif algorithm == 'LSTM':
# X, y = prepare_lstm_data(data)
# model = Sequential()
# model.add(LSTM(50, return_sequences=True, input_shape=(X.shape[1], X.shape[2])))
# model.add(LSTM(50))
# model.add(Dense(1))
# model.compile(optimizer='adam', loss='mean_squared_error')
# model.fit(X, y, epochs=10, batch_size=32, verbose=0)
# last_data_point = np.expand_dims(X[-1], axis=0)
# future_prices = [model.predict(last_data_point)[0][0] for _ in range(days)]
# elif algorithm == 'ARIMA':
# model = ARIMA(data['Close'], order=(5, 1, 0))
# model_fit = model.fit()
# future_prices = model_fit.forecast(steps=10)
# elif algorithm == 'SARIMA':
# model = SARIMAX(data['Close'], order=(5, 1, 0), seasonal_order=(1, 1, 0, 12))
# model_fit = model.fit()
# forecast = model_fit.forecast(steps=10)
# logger.info("Future prices predicted using LSTM model.")
# return future_prices, None, None, None, None
# else:
# logger.error("Algorithm not recognized: %s", algorithm)
# return None, None, None, None, None
# model.fit(X_train, y_train)
# predictions = model.predict(X_test)
# mae = mean_absolute_error(y_test, predictions)
# r2 = r2_score(y_test, predictions)
# future_prices = []
# last_data_point = features.iloc[-1].values.reshape(1, -1) # Ensure it's 2D
# for _ in range(days):
# future_price = model.predict(last_data_point)[0]
# future_prices.append(future_price)
# last_data_point = last_data_point + 1 # Update last data point (simplified, better methods should be used)
# logger.info("Future prices predicted using %s model.", algorithm)
# return future_prices, mae, r2, None, None
# import pandas as pd
# import numpy as np
# import yfinance as yf
# import ta
# from sklearn.model_selection import train_test_split
# from sklearn.linear_model import LinearRegression
# from sklearn.tree import DecisionTreeRegressor
# from sklearn.ensemble import RandomForestRegressor
# from sklearn.metrics import mean_absolute_error, r2_score
# import xgboost as xgb
# from catboost import CatBoostRegressor
# from tensorflow.keras.models import Sequential
# from tensorflow.keras.layers import LSTM, Dense
# from sklearn.preprocessing import MinMaxScaler
# from statsmodels.tsa.arima_model import ARIMA
# from statsmodels.tsa.statespace.sarimax import SARIMAX
# from logger import get_logger
# logger = get_logger(__name__)
# # Fetch historical data
# def fetch_data(ticker, start_date, end_date):
# logger.info(f"Fetching data for {ticker} from {start_date} to {end_date}")
# data = yf.download(ticker, start=start_date, end=end_date)
# if data.empty:
# logger.warning(f"No data returned for {ticker}.")
# return None
# # Reset index to ensure Date is a column
# data.reset_index(inplace=True)
# logger.info(f"Data fetched successfully for {ticker}.")
# return data
# def calculate_indicators(data: pd.DataFrame) -> pd.DataFrame:
# logger.info("Calculating indicators with fixed parameters.")
# # Check if required columns are present
# required_columns = ['Close', 'High', 'Low', 'Volume']
# missing_columns = [col for col in required_columns if col not in data.columns]
# if missing_columns:
# logger.error(f"Missing columns in data: {', '.join(missing_columns)}")
# raise KeyError(f"Missing columns in data: {', '.join(missing_columns)}")
# # Calculate fixed moving averages
# ma_period = 50 # Fixed period for moving averages
# try:
# data[f'SMA_{ma_period}'] = data['Close'].rolling(window=ma_period).mean()
# data[f'EMA_{ma_period}'] = data['Close'].ewm(span=ma_period, adjust=False).mean()
# except Exception as e:
# logger.error(f"Error calculating moving averages: {e}")
# raise
# # Calculate other indicators
# try:
# data['RSI'] = ta.momentum.RSIIndicator(data['Close']).rsi()
# macd = ta.trend.MACD(data['Close'])
# data['MACD'] = macd.macd()
# data['MACD_Signal'] = macd.macd_signal()
# bollinger = ta.volatility.BollingerBands(data['Close'])
# data['Bollinger_High'] = bollinger.bollinger_hband()
# data['Bollinger_Low'] = bollinger.bollinger_lband()
# data['ATR'] = ta.volatility.AverageTrueRange(data['High'], data['Low'], data['Close']).average_true_range()
# data['OBV'] = ta.volume.OnBalanceVolumeIndicator(data['Close'], data['Volume']).on_balance_volume()
# except Exception as e:
# logger.error(f"Error calculating other indicators: {e}")
# raise
# # Debugging line to check the columns
# logger.debug("Columns after calculating indicators: %s", data.columns)
# data = data.dropna()
# logger.info("Indicators calculated successfully.")
# return data
# # Calculate support and resistance levels
# def calculate_support_resistance(data, window=30):
# logger.info(f"Calculating support and resistance with a window of {window}.")
# recent_data = data.tail(window)
# rolling_max = data['Close'].rolling(window=window).max()
# rolling_min = data['Close'].rolling(window=window).min()
# recent_max = recent_data['Close'].max()
# recent_min = recent_data['Close'].min()
# support = min(rolling_min.iloc[-1], recent_min)
# resistance = max(rolling_max.iloc[-1], recent_max)
# logger.debug("Support: %f, Resistance: %f", support, resistance)
# return support, resistance
# # Prepare data for LSTM model
# def prepare_lstm_data(data):
# logger.info("Preparing data for LSTM model.")
# features = data[['Open', 'SMA_50', 'EMA_50', 'RSI', 'MACD', 'MACD_Signal', 'Bollinger_High', 'Bollinger_Low', 'ATR', 'OBV']].values
# target = data['Close'].values
# scaler = MinMaxScaler()
# features = scaler.fit_transform(features)
# X, y = [], []
# for i in range(len(features) - 60):
# X.append(features[i:i+60])
# y.append(target[i+60])
# logger.info("Data preparation for LSTM completed.")
# return np.array(X), np.array(y)
# # Predict future prices using the selected algorithm
# def predict_future_prices(data, algorithm, days=10):
# logger.info(f"Predicting future prices using {algorithm}.")
# # Check if required columns are present
# required_columns = ['Open', 'SMA_50', 'EMA_50', 'RSI', 'MACD', 'MACD_Signal', 'Bollinger_High', 'Bollinger_Low', 'ATR', 'OBV']
# missing_columns = [col for col in required_columns if col not in data.columns]
# if missing_columns:
# logger.error("Missing columns in data: %s", ', '.join(missing_columns))
# raise KeyError(f"Missing columns in data: {', '.join(missing_columns)}")
# features = data[required_columns]
# target = data['Close']
# X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)
# if algorithm == 'Linear Regression':
# model = LinearRegression()
# elif algorithm == 'Decision Tree':
# model = DecisionTreeRegressor()
# elif algorithm == 'Random Forest':
# model = RandomForestRegressor(n_estimators=100)
# elif algorithm == 'XGBoost':
# model = xgb.XGBRegressor(objective='reg:squarederror', eval_metric='rmse')
# elif algorithm == 'CatBoost':
# model = CatBoostRegressor(learning_rate=0.1, depth=6, iterations=500, verbose=0)
# elif algorithm == 'LSTM':
# X, y = prepare_lstm_data(data)
# model = Sequential()
# model.add(LSTM(50, return_sequences=True, input_shape=(X.shape[1], X.shape[2])))
# model.add(LSTM(50))
# model.add(Dense(1))
# model.compile(optimizer='adam', loss='mean_squared_error')
# model.fit(X, y, epochs=10, batch_size=32, verbose=0)
# last_data_point = np.expand_dims(X[-1], axis=0)
# future_prices = [model.predict(last_data_point)[0][0] for _ in range(days)]
# logger.info("Future prices predicted using LSTM model.")
# return future_prices, None, None, None, None
# elif algorithm == 'ARIMA':
# model = ARIMA(data['Close'], order=(5, 1, 0))
# model_fit = model.fit(disp=0)
# forecast = model_fit.forecast(steps=days)[0]
# mae = mean_absolute_error(target[-days:], forecast[:days])
# r2 = r2_score(target[-days:], forecast[:days])
# logger.info("Future prices predicted using ARIMA model.")
# return forecast.tolist(), mae, r2, None, None
# elif algorithm == 'SARIMA':
# model = SARIMAX(data['Close'], order=(5, 1, 0), seasonal_order=(1, 1, 0, 12))
# model_fit = model.fit(disp=0)
# forecast = model_fit.forecast(steps=days)
# mae = mean_absolute_error(target[-days:], forecast[:days])
# r2 = r2_score(target[-days:], forecast[:days])
# logger.info("Future prices predicted using SARIMA model.")
# return forecast.tolist(), mae, r2, None, None
# else:
# logger.error("Algorithm not recognized: %s", algorithm)
# return None, None, None, None, None
# model.fit(X_train, y_train)
# predictions = model.predict(X_test)
# mae = mean_absolute_error(y_test, predictions)
# r2 = r2_score(y_test, predictions)
# future_prices = []
# last_data_point = features.iloc[-1].values.reshape(1, -1) # Ensure it's 2D
# for _ in range(days):
# future_price = model.predict(last_data_point)[0]
# future_prices.append(future_price)
# last_data_point = last_data_point + 1 # Update last data point (simplified, better methods should be used)
# logger.info("Future prices predicted using %s model.", algorithm)
# return future_prices, mae, r2, predictions, y_test
# # model.py
# import pandas as pd
# import numpy as np
# import yfinance as yf
# import statsmodels.api as sm
# from statsmodels.tsa.arima.model import ARIMA
# from statsmodels.tsa.statespace.sarimax import SARIMAX
# from sklearn.metrics import mean_absolute_error, r2_score
# def fetch_data(ticker, start_date, end_date):
# try:
# df = yf.download(ticker, start=start_date, end=end_date)
# return df
# except Exception as e:
# print(f"An error occurred while fetching data: {e}")
# return None
# def calculate_indicators(data):
# # Example indicators - these should be tailored to your requirements
# data['SMA_50'] = data['Close'].rolling(window=50).mean()
# data['EMA_50'] = data['Close'].ewm(span=50, adjust=False).mean()
# data['RSI'] = calculate_rsi(data['Close'])
# data['MACD'], data['MACD_Signal'] = calculate_macd(data['Close'])
# data['Bollinger_High'], data['Bollinger_Low'] = calculate_bollinger_bands(data['Close'])
# data['ATR'] = calculate_atr(data)
# data['OBV'] = calculate_obv(data)
# return data
# def calculate_rsi(series, period=14):
# delta = series.diff()
# gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
# loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
# rs = gain / loss
# return 100 - (100 / (1 + rs))
# def calculate_macd(series):
# macd = series.ewm(span=12, adjust=False).mean() - series.ewm(span=26, adjust=False).mean()
# macd_signal = macd.ewm(span=9, adjust=False).mean()
# return macd, macd_signal
# def calculate_bollinger_bands(series, window=20):
# rolling_mean = series.rolling(window=window).mean()
# rolling_std = series.rolling(window=window).std()
# high = rolling_mean + (rolling_std * 2)
# low = rolling_mean - (rolling_std * 2)
# return high, low
# def calculate_atr(data, window=14):
# high_low = data['High'] - data['Low']
# high_close = np.abs(data['High'] - data['Close'].shift())
# low_close = np.abs(data['Low'] - data['Close'].shift())
# tr = np.max(np.array([high_low, high_close, low_close]), axis=0)
# atr = tr.rolling(window=window).mean()
# return atr
# def calculate_obv(data):
# obv = (data['Volume'] * np.sign(data['Close'].diff())).fillna(0).cumsum()
# return obv
# def calculate_support_resistance(data):
# # Example calculation - you may need to refine this based on your requirements
# support = data['Close'].min()
# resistance = data['Close'].max()
# return support, resistance
# def predict_future_prices(data, model_type='ARIMA'):
# try:
# # Use ARIMA
# if model_type == 'ARIMA':
# model = ARIMA(data['Close'], order=(5, 1, 0))
# model_fit = model.fit()
# forecast = model_fit.forecast(steps=10)
# # Use SARIMA
# elif model_type == 'SARIMA':
# model = SARIMAX(data['Close'], order=(5, 1, 0), seasonal_order=(1, 1, 0, 12))
# model_fit = model.fit()
# forecast = model_fit.forecast(steps=10)
# else:
# raise ValueError("Unsupported model type. Use 'ARIMA' or 'SARIMA'.")
# # Calculate MAE and R2 for evaluation
# y_true = data['Close'][-10:] # last 10 days as true values for comparison
# mae = mean_absolute_error(y_true, forecast[:len(y_true)])
# r2 = r2_score(y_true, forecast[:len(y_true)])
# # Return results
# return forecast, mae, r2
# except Exception as e:
# print(f"An error occurred while predicting future prices: {e}")
# return None, None, None