Skip to content

Latest commit

 

History

History
63 lines (52 loc) · 6.45 KB

README.md

File metadata and controls

63 lines (52 loc) · 6.45 KB

Jupyter Notebooks for:

Yunjun, Z., H. Fattahi, F. Amelung (2019), Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction, Computers & Geosciences, 133, 104331, doi:10.1016/j.cageo.2019.104331, arXiv, code.

Data (zenodo)

Dataset 1: ALOS ascending track 133 frame 7160-7180 for Galápagos volcanoes

Dataset 2: Sentinel-1 descending track 128 frame 593-597 for Galápagos volcanoes

Useful links

Figures (nbviewer)

NOTE: This notebook is based on the released version of MintPy-1.2 and NOT maintained for future development. All figures are plotted using matplotlib.

  • Fig. 1 - Performance of four weight functions.
  • Fig. 2 - Phase-unwrapping error correction with bridging.
  • Fig. 3 - Characteristics of phase-unwrapping error in the closure phase.
  • Fig. 4 - Phase-unwrapping error correction with phase closure.
  • Fig. 5 - Routine workflow.
  • Fig. 6 - Velocity at Isabela, Fernandina and Santiago islands.
  • Fig. 7 - Displacement time-series at Fernandina island.
  • Fig. 8 - Comparing InSAR with GPS.
  • Fig. 9 - Assessment of phase-unwrapping error correction using temporal coherence.
  • Fig. 10 - Impact of network modification using temporal coherence.
  • Fig. 11 - Spatial inspection of the inverted raw phase.
  • Fig. 12 - Impact of noisy acquisitions on velocity estimation.
  • Fig. 13 - Phase corrections in the time-series domain.
  • Fig. 14 - Impact of network redundancy.
  • Fig. 15 - Advantage and limitation of temporal coherence as reliability measure.
  • Fig. 16 - Comparing MintPy with GIAnT.