-
Notifications
You must be signed in to change notification settings - Fork 0
/
SNF.html
84 lines (73 loc) · 3.56 KB
/
SNF.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
<!DOCTYPE HTML>
<!--
Solarize by TEMPLATED
templated.co @templatedco
Released for free under the Creative Commons Attribution 3.0 license (templated.co/license)
-->
<html>
<head>
<title>SNF</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="description" content="" />
<meta name="keywords" content="" />
<!--[if lte IE 8]><script src="css/ie/html5shiv.js"></script><![endif]-->
<script src="js/jquery.min.js"></script>
<script src="js/jquery.dropotron.min.js"></script>
<script src="js/skel.min.js"></script>
<script src="js/skel-layers.min.js"></script>
<script src="js/init.js"></script>
<noscript>
<link rel="stylesheet" href="css/skel.css" />
<link rel="stylesheet" href="css/style.css" />
</noscript>
<!--[if lte IE 8]><link rel="stylesheet" href="css/ie/v8.css" /><![endif]-->
</head>
<!-- Header Wrapper -->
<div class="wrapper style1">
<!-- Header -->
<div id="header">
<!-- Logo -->
<h1><a id="logo">Goldenberg Lab</a></h1>
<div class="container">
<!-- Nav -->
<nav id="nav">
<ul>
<li class="active"><a href="index.html">Home</a></li>
<li><a href="current.html">Current Research</a>
</li>
<li><a href="people.html">The Team</a>
</li>
<li><a href="Publications.html">Publications</a></li>
<li><a href="contact.html">Contact</a></li>
</ul>
</nav>
</div>
</div>
<!-- Main -->
<!-- Section Three -->
<div class="wrapper style6">
<section class="container">
<header class="major">
<h2>Similarity Network Fusion</h2>
</header>
<div class="12u">
<img src="images/portfolio/3_big.png" alt="">
</div>
<div class="text-center" style="color:#000">
Recent technologies have made it cost-effective to collect diverse types of genome-wide data. Computational methods are needed to combine these data to create a comprehensive view of a given disease or a biological process. Similarity network fusion (SNF) solves this problem by constructing networks of samples (e.g., patients) for each available data type and then efficiently fusing these into one network that represents the full spectrum of underlying data. For example, to create a comprehensive view of a disease given a cohort of patients, SNF computes and fuses patient similarity networks obtained from each of their data types separately, taking advantage of the complementarity in the data. We used SNF to combine mRNA expression, DNA methylation and microRNA (miRNA) expression data for five cancer data sets. SNF substantially outperforms single data type analysis and established integrative approaches when identifying cancer subtypes and is effective for predicting survival.
</div>
</section>
<a href="http://www.nature.com/nmeth/journal/v11/n3/full/nmeth.2810.html">link to paper</a>
and
<a href="https://cran.r-project.org/web/packages/SNFtool/index.html">SNF on CRAN</a>
</div>
<!-- Footer -->
<div id="footer">
<section class="container">
<header class="major">
<h3><a href="contact.html">Contact Us</a></h3>
</header>
</section>
</div>
</div>
</html>