-
Notifications
You must be signed in to change notification settings - Fork 2
/
mcts_with_policy.py
223 lines (190 loc) · 7.89 KB
/
mcts_with_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# -*- coding: utf-8 -*-
"""
Monte Carlo Tree Search in AlphaGo Zero style, which uses a policy-value
network to guide the tree search and evaluate the leaf nodes
"""
import numpy as np
import copy
from pprint import pprint
def softmax(x):
probs = np.exp(x - np.max(x))
probs /= np.sum(probs)
return probs
class TreeNode(object):
"""A node in the MCTS tree.
Each node keeps track of its own value Q, prior probability P, and
its visit-count-adjusted prior score u.
"""
def __init__(self, parent, prior_p):
self._parent = parent
self._children = {} # a map from action to TreeNode
self._n_visits = 0
self._Q = 0
self._u = 0
self._P = prior_p
def expand(self, action_priors):
"""Expand tree by creating new children.
action_priors: a list of tuples of actions and their prior probability
according to the policy function.
"""
for action, prob in action_priors:
if action not in self._children:
self._children[action] = TreeNode(self, prob)
def select(self, c_puct):
"""Select action among children that gives maximum action value Q
plus bonus u(P).
Return: A tuple of (action, next_node)
"""
return max(self._children.items(),
key=lambda act_node: act_node[1].get_value(c_puct))
def update(self, leaf_value):
"""Update node values from leaf evaluation.
leaf_value: the value of subtree evaluation from the current player's
perspective.
"""
# Count visit.
self._n_visits += 1
# Update Q, a running average of values for all visits.
self._Q += 1.0*(leaf_value - self._Q) / self._n_visits
def update_recursive(self, leaf_value):
"""Like a call to update(), but applied recursively for all ancestors.
"""
# If it is not root, this node's parent should be updated first.
if self._parent:
self._parent.update_recursive(-leaf_value)
self.update(leaf_value)
def get_value(self, c_puct):
"""Calculate and return the value for this node.
It is a combination of leaf evaluations Q, and this node's prior
adjusted for its visit count, u.
c_puct: a number in (0, inf) controlling the relative impact of
value Q, and prior probability P, on this node's score.
"""
self._u = (c_puct * self._P *
np.sqrt(self._parent._n_visits) / (1 + self._n_visits))
return self._Q + self._u
def is_leaf(self):
"""Check if leaf node (i.e. no nodes below this have been expanded)."""
return self._children == {}
def is_root(self):
return self._parent is None
class MCTS(object):
"""An implementation of Monte Carlo Tree Search."""
def __init__(self, policy_value_fn, c_puct=5, n_playout=10000):
"""
policy_value_fn: a function that takes in a metasurface state and outputs
a list of (action, probability) tuples and also a score in [-1, 1]
(i.e. the expected value of the end game score from the current
player's perspective) for the current player.
c_puct: a number in (0, inf) that controls how quickly exploration
converges to the maximum-value policy. A higher value means
relying on the prior more.
"""
self._root = TreeNode(None, 1.0)
self._policy = policy_value_fn
self._c_puct = c_puct
self._n_playout = n_playout
def _playout(self, state):
"""Run a single playout from the root to the leaf, getting a value at
the leaf and propagating it back through its parents.
State is modified in-place, so a copy must be provided.
"""
node = self._root
while(1):
if node.is_leaf():
break
# Greedily select next move.
action, node = node.select(self._c_puct)
state.do_move(action)
# Evaluate the leaf using a network which outputs a list of
# (action, probability) tuples p and also a score v in [-1, 1]
# for the current player.
action_probs, leaf_value = self._policy(state)
# Check for end of game.
end, winner = state.game_end()
if not end:
node.expand(action_probs)
else:
# for end state,return the "true" leaf_value
if winner == -1: # tie
leaf_value = 0.0
else:
leaf_value = (
1.0 if winner == state.get_current_player() else -1.0
)
# Update value and visit count of nodes in this traversal.
node.update_recursive(-leaf_value)
def get_move_probs(self, state, temp=1e-3):
"""Run all playouts sequentially and return the available actions and
their corresponding probabilities.
state: the current game state
temp: temperature parameter in (0, 1] controls the level of exploration
"""
# pprint(vars(state))
# if state is None:
# print('None')
for n in range(self._n_playout):
# print (n)
state_copy = copy.deepcopy(state)
self._playout(state_copy)
# calc the move probabilities based on visit counts at the root node
act_visits = [(act, node._n_visits)
for act, node in self._root._children.items()]
acts, visits = zip(*act_visits)
act_probs = softmax(1.0/temp * np.log(np.array(visits) + 1e-10))
return acts, act_probs
def update_with_move(self, last_move):
"""Step forward in the tree, keeping everything we already know
about the subtree.
"""
if last_move in self._root._children:
self._root = self._root._children[last_move]
self._root._parent = None
else:
self._root = TreeNode(None, 1.0)
def __str__(self):
return "MCTS"
class MCTSPlayer(object):
"""AI player based on MCTS"""
def __init__(self, policy_value_function,
c_puct=5, n_playout=2000, is_selfplay=0):
self.mcts = MCTS(policy_value_function, c_puct, n_playout)
self._is_selfplay = is_selfplay
def set_player_ind(self, p):
self.player = p
def reset_player(self):
self.mcts.update_with_move(-1)
def get_action(self, metasurface, temp=1e-3, return_prob=0):
sensible_moves = metasurface.availables
# print (sensible_moves)
# the pi vector returned by MCTS as in the alphaGo Zero paper
move_probs = np.zeros(metasurface.width*metasurface.height)
# print ('get action')
if len(sensible_moves) > 0:
acts, probs = self.mcts.get_move_probs(metasurface, temp)
move_probs[list(acts)] = probs
if self._is_selfplay:
# add Dirichlet Noise for exploration (needed for
# self-play training)
move = np.random.choice(
acts,
p=0.75*probs + 0.25*np.random.dirichlet(0.3*np.ones(len(probs)))
)
# update the root node and reuse the search tree
self.mcts.update_with_move(move)
else:
# with the default temp=1e-3, it is almost equivalent
# to choosing the move with the highest prob
move = np.random.choice(acts, p=probs)
# reset the root node
self.mcts.update_with_move(-1)
# location = metasurface.move_to_location(move)
# print("AI move: %d,%d\n" % (location[0], location[1]))
if return_prob:
return move, move_probs
else:
return move
else:
print("WARNING: the metasurface is full")
def __str__(self):
return "MCTS With policy {}".format(self.player)