-
Notifications
You must be signed in to change notification settings - Fork 0
/
cerca_acumulacion.lean
305 lines (279 loc) · 8.95 KB
/
cerca_acumulacion.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
-- Si a es un punto de acumulación de u, entonces ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε
-- ===================================================================================
import data.real.basic
variable {u : ℕ → ℝ}
variables {a : ℝ}
variable {φ : ℕ → ℕ}
-- ----------------------------------------------------
-- Nota. Usaremos los siguientes conceptos estudiados
-- anteriormente.
-- ----------------------------------------------------
notation `|`x`|` := abs x
def limite : (ℕ → ℝ) → ℝ → Prop :=
λ u c, ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - c| ≤ ε
def extraccion : (ℕ → ℕ) → Prop
| φ := ∀ n m, n < m → φ n < φ m
lemma id_mne_extraccion
(h : extraccion φ)
: ∀ n, n ≤ φ n :=
begin
intros n,
induction n with m HI,
{ linarith },
{ exact nat.succ_le_of_lt (by linarith [h m (m+1) (by linarith)]) },
end
lemma extraccion_mye
(h : extraccion φ)
: ∀ N N', ∃ n ≥ N', φ n ≥ N :=
λ N N',
⟨max N N', le_max_right N N',
le_trans (le_max_left N N')
(id_mne_extraccion h (max N N'))⟩
-- ----------------------------------------------------
-- Ejercicio 1. Definir la función
-- punto_acumulacion : (ℕ → ℝ) → ℝ → Prop
-- tal que (punto_acumulacion u a) expresa que a es un
-- punto de acumulación de u; es decir, que es el
-- límite de alguna subsucesión de u.
-- ----------------------------------------------------
def punto_acumulacion : (ℕ → ℝ) → ℝ → Prop
| u a := ∃ φ, extraccion φ ∧ limite (u ∘ φ) a
-- ----------------------------------------------------
-- Ejercicio 2. Demostrar que si a es un punto de
-- acumulación de u, entonces
-- ∀ ε > 0, ∀ N, ∃ k ≥ N, |u k - a| ≤ ε
-- ----------------------------------------------------
-- 1ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
begin
intros ε hε N,
-- unfold punto_acumulacion at h,
rcases h with ⟨φ, hφ1, hφ2⟩,
-- unfold limite at hφ2,
cases hφ2 ε hε with N' hN',
rcases extraccion_mye hφ1 N N' with ⟨m, hm, hm'⟩,
-- clear hφ1 hφ2,
use φ m,
split,
{ exact hm', },
{ exact hN' m hm, },
end
-- 2ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
begin
intros ε hε N,
rcases h with ⟨φ, hφ1, hφ2⟩,
cases hφ2 ε hε with N' hN',
rcases extraccion_mye hφ1 N N' with ⟨m, hm, hm'⟩,
use φ m,
exact ⟨hm', hN' m hm⟩,
end
-- 3ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
begin
intros ε hε N,
rcases h with ⟨φ, hφ1, hφ2⟩,
cases hφ2 ε hε with N' hN',
rcases extraccion_mye hφ1 N N' with ⟨m, hm, hm'⟩,
exact ⟨φ m, hm', hN' _ hm⟩,
end
-- 4ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
begin
intros ε hε N,
rcases h with ⟨φ, hφ1, hφ2⟩,
cases hφ2 ε hε with N' hN',
rcases extraccion_mye hφ1 N N' with ⟨m, hm, hm'⟩,
use φ m ; finish
end
-- 5ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
assume ε,
assume hε : ε > 0,
assume N,
exists.elim h
( assume φ,
assume hφ : extraccion φ ∧ limite (u ∘ φ) a,
exists.elim (hφ.2 ε hε)
( assume N',
assume hN' : ∀ (n : ℕ), n ≥ N' → |(u ∘ φ) n - a| ≤ ε,
have h1 : ∃ n ≥ N', φ n ≥ N,
from extraccion_mye hφ.1 N N',
exists.elim h1
( assume m,
assume hm : ∃ (H : m ≥ N'), φ m ≥ N,
exists.elim hm
( assume hm1 : m ≥ N',
assume hm2 : φ m ≥ N,
have h2 : |u (φ m) - a| ≤ ε,
from hN' m hm1,
show ∃ n ≥ N, |u n - a| ≤ ε,
from exists.intro (φ m) (exists.intro hm2 h2)))))
-- 6ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
assume ε,
assume hε : ε > 0,
assume N,
exists.elim h
( assume φ,
assume hφ : extraccion φ ∧ limite (u ∘ φ) a,
exists.elim (hφ.2 ε hε)
( assume N',
assume hN' : ∀ (n : ℕ), n ≥ N' → |(u ∘ φ) n - a| ≤ ε,
have h1 : ∃ n ≥ N', φ n ≥ N,
from extraccion_mye hφ.1 N N',
exists.elim h1
( assume m,
assume hm : ∃ (H : m ≥ N'), φ m ≥ N,
exists.elim hm
( assume hm1 : m ≥ N',
assume hm2 : φ m ≥ N,
have h2 : |u (φ m) - a| ≤ ε,
from hN' m hm1,
show ∃ n ≥ N, |u n - a| ≤ ε,
from ⟨φ m, hm2, h2⟩))))
-- 7ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
assume ε,
assume hε : ε > 0,
assume N,
exists.elim h
( assume φ,
assume hφ : extraccion φ ∧ limite (u ∘ φ) a,
exists.elim (hφ.2 ε hε)
( assume N',
assume hN' : ∀ (n : ℕ), n ≥ N' → |(u ∘ φ) n - a| ≤ ε,
have h1 : ∃ n ≥ N', φ n ≥ N,
from extraccion_mye hφ.1 N N',
exists.elim h1
( assume m,
assume hm : ∃ (H : m ≥ N'), φ m ≥ N,
exists.elim hm
( assume hm1 : m ≥ N',
assume hm2 : φ m ≥ N,
have h2 : |u (φ m) - a| ≤ ε,
from hN' m hm1,
⟨φ m, hm2, h2⟩))))
-- 8ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
assume ε,
assume hε : ε > 0,
assume N,
exists.elim h
( assume φ,
assume hφ : extraccion φ ∧ limite (u ∘ φ) a,
exists.elim (hφ.2 ε hε)
( assume N',
assume hN' : ∀ (n : ℕ), n ≥ N' → |(u ∘ φ) n - a| ≤ ε,
have h1 : ∃ n ≥ N', φ n ≥ N,
from extraccion_mye hφ.1 N N',
exists.elim h1
( assume m,
assume hm : ∃ (H : m ≥ N'), φ m ≥ N,
exists.elim hm
( assume hm1 : m ≥ N',
assume hm2 : φ m ≥ N,
⟨φ m, hm2, hN' m hm1⟩))))
-- 9ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
assume ε,
assume hε : ε > 0,
assume N,
exists.elim h
( assume φ,
assume hφ : extraccion φ ∧ limite (u ∘ φ) a,
exists.elim (hφ.2 ε hε)
( assume N',
assume hN' : ∀ (n : ℕ), n ≥ N' → |(u ∘ φ) n - a| ≤ ε,
have h1 : ∃ n ≥ N', φ n ≥ N,
from extraccion_mye hφ.1 N N',
exists.elim h1
( assume m,
assume hm : ∃ (H : m ≥ N'), φ m ≥ N,
exists.elim hm
(λ hm1 hm2, ⟨φ m, hm2, hN' m hm1⟩))))
-- 10ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
assume ε,
assume hε : ε > 0,
assume N,
exists.elim h
( assume φ,
assume hφ : extraccion φ ∧ limite (u ∘ φ) a,
exists.elim (hφ.2 ε hε)
( assume N',
assume hN' : ∀ (n : ℕ), n ≥ N' → |(u ∘ φ) n - a| ≤ ε,
have h1 : ∃ n ≥ N', φ n ≥ N,
from extraccion_mye hφ.1 N N',
exists.elim h1
(λ m hm, exists.elim hm (λ hm1 hm2, ⟨φ m, hm2, hN' m hm1⟩))))
-- 11ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
assume ε,
assume hε : ε > 0,
assume N,
exists.elim h
( assume φ,
assume hφ : extraccion φ ∧ limite (u ∘ φ) a,
exists.elim (hφ.2 ε hε)
( assume N',
assume hN' : ∀ (n : ℕ), n ≥ N' → |(u ∘ φ) n - a| ≤ ε,
exists.elim (extraccion_mye hφ.1 N N')
(λ m hm, exists.elim hm (λ hm1 hm2, ⟨φ m, hm2, hN' m hm1⟩))))
-- 12ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
assume ε,
assume hε : ε > 0,
assume N,
exists.elim h
( assume φ,
assume hφ : extraccion φ ∧ limite (u ∘ φ) a,
exists.elim (hφ.2 ε hε)
(λ N' hN', exists.elim (extraccion_mye hφ.1 N N')
(λ m hm, exists.elim hm
(λ hm1 hm2, ⟨φ m, hm2, hN' m hm1⟩))))
-- 13ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
assume ε,
assume hε : ε > 0,
assume N,
exists.elim h
(λ φ hφ, exists.elim (hφ.2 ε hε)
(λ N' hN', exists.elim (extraccion_mye hφ.1 N N')
(λ m hm, exists.elim hm
(λ hm1 hm2, ⟨φ m, hm2, hN' m hm1⟩))))
-- 14ª demostración
example
(h : punto_acumulacion u a)
: ∀ ε > 0, ∀ N, ∃ n ≥ N, |u n - a| ≤ ε :=
λ ε hε N, exists.elim h
(λ φ hφ, exists.elim (hφ.2 ε hε)
(λ N' hN', exists.elim (extraccion_mye hφ.1 N N')
(λ m hm, exists.elim hm
(λ hm1 hm2, ⟨φ m, hm2, hN' m hm1⟩))))