By Jialong Wu.
A curated list of datasets, codebases and papers on Multi-Task Learning (MTL), from Machine Learning perspective. I greatly appreciate those surveys below, which helped me a lot.
Please let me know if you find any mistakes or omissions! Your contribution is welcome!
Awesome Multi-Task Learning
- ✨ Vandenhende, S., Georgoulis, S., Proesmans, M., Dai, D., & Van Gool, L. Multi-Task Learning for Dense Prediction Tasks: A Survey. TPAMI, 2021.
- Crawshaw, M. Multi-Task Learning with Deep Neural Networks: A Survey. ArXiv, 2020.
- Worsham, J., & Kalita, J. Multi-task learning for natural language processing in the 2020s: Where are we going? Pattern Recognition Letters, 2020.
- Gong, T., Lee, T., Stephenson, C., Renduchintala, V., Padhy, S., Ndirango, A., Keskin, G., & Elibol, O. H. A Comparison of Loss Weighting Strategies for Multi task Learning in Deep Neural Networks. IEEE Access, 2019.
- Li, J., Liu, X., Yin, W., Yang, M., Ma, L., & Jin, Y. Empirical Evaluation of Multi-task Learning in Deep Neural Networks for Natural Language Processing. Neural Computing and Applications, 2021.
- ✨ Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. ArXiv, 2017.
- ✨ Zhang, Y., & Yang, Q. A Survey on Multi-Task Learning. IEEE TKDE, 2021.
- MultiMNIST / MultiFashionMNIST
- a multitask variant of the MNIST / FashionMNIST dataset
⚠️ Toy datasets- See: MGDA, Pareto MTL, IT-MTL, etc.
- ✨ NYUv2 [URL]
- 3 Tasks: Semantic Segmentation, Depth Estimation, Surface Normal Estimation
- Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor Segmentation and Support Inference from RGBD Images. ECCV, 2012.
- ✨ CityScapes [URL]
- 3 Tasks: Semantic Segmentation, Instance Segmentation, Depth Estimation
- ✨ PASCAL Context [URL]
- Tasks: Semantic Segmentation, Human Part Segmentation, Semantic Edge Detection, Surface Normals Prediction, Saliency Detection.
- ✨ CelebA [URL]
- Tasks: 40 human face Attributes.
- ✨ Taskonomy [URL]
- 26 Tasks: Scene Categorization, Semantic Segmentation, Edge Detection, Monocular Depth Estimation, Keypoint Detection, etc.
- Visual Domain Decathlon [URL]
- 10 Datasets: ImageNet, Aircraft, CIFAR100, etc.
- Multi-domain multi-task learning
- Rebuffi, S.-A., Bilen, H., & Vedaldi, A. Learning multiple visual domains with residual adapters. NeurIPS, 2017.
- BDD100K [URL]
- 10-task Driving Dataset
- Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., & Darrell, T. BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning. CVPR, 2020.
- MS COCO
- Object detection, pose estimation, semantic segmentation.
- See: MultiTask-CenterNet (MCN): Efficient and Diverse Multitask Learning using an Anchor Free Approach.
- Omnidata [URL]
- A pipeline to resample comprehensive 3D scans from the real-world into static multi-task vision datasets
- Eftekhar, A., Sax, A., Bachmann, R., Malik, J., & Zamir, A. Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans. ICCV, 2021.
- ✨ GLUE - General Language Understanding Evaluation [URL]
- ✨ decaNLP - The Natural Language Decathlon: A Multitask Challenge for NLP [URL]
- WMT Multilingual Machine Translation
tasksource
- 500+ MultipleChoice/Classification/TokenClassification tasks from HuggingFace Datasets Hub [URL]
- QM9 [URL]
- 11 properties of molecules; multi-task regression
- See: Multi-Task Learning as a Bargaining Game.
- AliExpress [URL]
- 2 Tasks: CTR and CTCVR from 5 countries
- Li, P., Li, R., Da, Q., Zeng, A. X., & Zhang, L. Improving Multi-Scenario Learning to Rank in E-commerce by Exploiting Task Relationships in the Label Space. CIKM, 2020.
- See: MTReclib
- MovieLens [URL]
- 2 Tasks: binary classification (whether the user will watch) & regression (user’s rating)
- See: DSelect-k: Differentiable Selection in the Mixture of Experts with Applications to Multi-Task Learning
- General
- Computer Vision
- ✨ Multi-Task-Learning-PyTorch: PyTorch implementation of multi-task learning architectures
- ✨ mtan: The implementation of "End-to-End Multi-Task Learning with Attention"
- ✨ auto-lambda: The Implementation of "Auto-Lambda: Disentangling Dynamic Task Relationships"
- astmt: Attentive Single-tasking of Multiple Tasks
- NLP
- ✨ mt-dnn: Multi-Task Deep Neural Networks for Natural Language Understanding
- Recommendation System
- ✨ MTReclib: MTReclib provides a PyTorch implementation of multi-task recommendation models and common datasets.
- RL
- mtrl: Multi Task RL Baselines
- Heuer, F., Mantowsky, S., Bukhari, S. S., & Schneider, G. MultiTask-CenterNet (MCN): Efficient and Diverse Multitask Learning using an Anchor Free Approach. ICCV, 2021.
- Hu, R., & Singh, A. UniT: Multimodal Multitask Learning with a Unified Transformer. ICCV, 2021.
- ✨ Liu, X., He, P., Chen, W., & Gao, J. Multi-Task Deep Neural Networks for Natural Language Understanding. ACL, 2019.
- ✨ Kokkinos, I. UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using Diverse Datasets and Limited Memory. CVPR, 2017.
- Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., & Urtasun, R. MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving. ArXiv, 2016.
- Caruana, R. Multitask Learning. 1997.
- Ruder, S., Bingel, J., Augenstein, I., & Søgaard, A. Latent Multi-task Architecture Learning. AAAI, 2019.
- Gao, Y., Ma, J., Zhao, M., Liu, W., & Yuille, A. L. NDDR-CNN: Layerwise Feature Fusing in Multi-Task CNNs by Neural Discriminative Dimensionality Reduction. CVPR, 2019.
- Long, M., Cao, Z., Wang, J., & Yu, P. S. Learning Multiple Tasks with Multilinear Relationship Networks. NeurIPS, 2017.
- ✨ Misra, I., Shrivastava, A., Gupta, A., & Hebert, M. Cross-Stitch Networks for Multi-task Learning. CVPR, 2016.
- ✨ Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., & Hadsell, R. Progressive Neural Networks. ArXiv, 2016.
- ✨ Yang, Y., & Hospedales, T. Deep Multi-task Representation Learning: A Tensor Factorisation Approach. ICLR, 2017.
- Yang, Y., & Hospedales, T. M. Trace Norm Regularised Deep Multi-Task Learning. ICLR Workshop, 2017.
- Ye, H., & Xu, D. TaskPrompter: Spatial-Channel Multi-Task Prompting for Dense Scene Understanding. ICLR, 2023.
- Ye, H., & Xu, D. Inverted Pyramid Multi-task Transformer for Dense Scene Understanding. ECCV, 2022.
- Bruggemann, D., Kanakis, M., Obukhov, A., Georgoulis, S., & Van Gool, L. Exploring Relational Context for Multi-Task Dense Prediction. ICCV, 2021.
- Vandenhende, S., Georgoulis, S., & Van Gool, L. MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning. ECCV, 2020.
- Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., & Yang, J. Pattern-Affinitive Propagation Across Depth, Surface Normal and Semantic Segmentation. CVPR, 2019.
- Xu, D., Ouyang, W., Wang, X., & Sebe, N. PAD-Net: Multi-tasks Guided Prediction-and-Distillation Network for Simultaneous Depth Estimation and Scene Parsing. CVPR, 2018.
- ✨ He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., & Neubig, G. Towards a Unified View of Parameter-Efficient Transfer Learning. ICLR, 2022.
- Zhang, L., Yang, Q., Liu, X., & Guan, H. Rethinking Hard-Parameter Sharing in Multi-Domain Learning. ICME, 2022.
- Zhu, Y., Feng, J., Zhao, C., Wang, M., & Li, L. Counter-Interference Adapter for Multilingual Machine Translation. Findings of EMNLP, 2021.
- ✨ Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. Arxiv, 2021.
- Pilault, J., Elhattami, A., & Pal, C. J. Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning in NLP Using Fewer Parameters & Less Data. ICLR, 2021.
- Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., & Gurevych, I. AdapterFusion: Non-Destructive Task Composition for Transfer Learning. EACL, 2021.
- Kanakis, M., Bruggemann, D., Saha, S., Georgoulis, S., Obukhov, A., & Van Gool, L. Reparameterizing Convolutions for Incremental Multi-Task Learning without Task Interference. ECCV, 2020.
- Pham, M. Q., Crego, J. M., Yvon, F., & Senellart, J. A Study of Residual Adapters for Multi-Domain Neural Machine Translation. WMT, 2020.
- ✨ Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., & Gurevych, I. AdapterHub: A Framework for Adapting Transformers. EMNLP 2020: Systems Demonstrations.
- Pfeiffer, J., Vulić, I., Gurevych, I., & Ruder, S. MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer. EMNLP, 2020.
- Zhao, M., Lin, T., Mi, F., Jaggi, M., & Schütze, H. Masking as an Efficient Alternative to Finetuning for Pretrained Language Models. EMNLP, 2020.
- ✨ [MTAN] Liu, S., Johns, E., & Davison, A. J. End-to-End Multi-Task Learning with Attention. CVPR, 2019.
- Strezoski, G., Noord, N., & Worring, M. Many Task Learning With Task Routing. ICCV, 2019.
- Maninis, K.-K., Radosavovic, I., & Kokkinos, I. Attentive Single-Tasking of Multiple Tasks. CVPR, 2019.
- ✨ Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., de Laroussilhe, Q., Gesmundo, A., Attariyan, M., & Gelly, S. Parameter-Efficient Transfer Learning for NLP. ICML, 2019.
- Stickland, A. C., & Murray, I. BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning. ICML, 2019.
- Zhao, X., Li, H., Shen, X., Liang, X., & Wu, Y. A Modulation Module for Multi-task Learning with Applications in Image Retrieval. ECCV, 2018.
- ✨ Rebuffi, S.-A., Vedaldi, A., & Bilen, H. Efficient Parametrization of Multi-domain Deep Neural Networks. CVPR, 2018.
- ✨ Rebuffi, S.-A., Bilen, H., & Vedaldi, A. Learning multiple visual domains with residual adapters. NeurIPS, 2017.
- Chen, Z., Shen, Y., Ding, M., Chen, Z., Zhao, H., Learned-Miller, E., & Gan, C. Mod-Squad: Designing Mixture of Experts As Modular Multi-Task Learners. CVPR, 2023.
- ✨ Yang, X., Ye, J., & Wang, X. Factorizing Knowledge in Neural Networks. ECCV, 2022.
- ✨ Liang, H., Fan, Z., Sarkar, R., Jiang, Z., Chen, T., Zou, K., ... & Wang, Z. M$^ 3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task Learning with Model-Accelerator Co-design. NeurIPS, 2022.
- Zhang, L., Liu, X., & Guan, H. AutoMTL: A Programming Framework for Automated Multi-Task Learning. NeurIPS, 2022.
- Gesmundo, A., & Dean, J. An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems. ArXiv, 2022.
- Tang, D., Zhang, F., Dai, Y., Zhou, C., Wu, S., & Shi, S. SkillNet-NLU: A Sparsely Activated Model for General-Purpose Natural Language Understanding. ArXiv, 2022.
- Ponti, E. M., Sordoni, A., Bengio, Y., & Reddy, S. Combining Modular Skills in Multitask Learning. ArXiv, 2022.
- Hazimeh, H., Zhao, Z., Chowdhery, A., Sathiamoorthy, M., Chen, Y., Mazumder, R., Hong, L., & Chi, E. H. DSelect-k: Differentiable Selection in the Mixture of Experts with Applications to Multi-Task Learning. NeurIPS, 2021.
- ✨ [Pathways] Introducing Pathways: A next-generation AI architecture. Oct 28, 2021. Retrieved March 9, 2022, from https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
- ✨ Yang, R., Xu, H., Wu, Y., & Wang, X. Multi-Task Reinforcement Learning with Soft Modularization. NeurIPS, 2020.
- Sun, X., Panda, R., & Feris, R. AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning. NeurIPS, 2020.
- Bruggemann, D., Kanakis, M., Georgoulis, S., & Van Gool, L. Automated Search for Resource-Efficient Branched Multi-Task Networks. BMVC, 2020.
- Gao, Y., Bai, H., Jie, Z., Ma, J., Jia, K., & Liu, W. MTL-NAS: Task-Agnostic Neural Architecture Search towards General-Purpose Multi-Task Learning. CVPR, 2020.
- ✨ [PLE] Tang, H., Liu, J., Zhao, M., & Gong, X. Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations. RecSys, 2020 (Best Paper).
- Bragman, F., Tanno, R., Ourselin, S., Alexander, D., & Cardoso, J. Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and Generalist Convolution Kernels. ICCV, 2019.
- Ahn, C., Kim, E., & Oh, S. Deep Elastic Networks with Model Selection for Multi-Task Learning. ICCV, 2019.
- Ma, J., Zhao, Z., Chen, J., Li, A., Hong, L., & Chi, E. H. SNR: Sub-Network Routing for Flexible Parameter Sharing in Multi-Task Learning. AAAI, 2019.
- Maziarz, K., Kokiopoulou, E., Gesmundo, A., Sbaiz, L., Bartok, G., & Berent, J. Flexible Multi-task Networks by Learning Parameter Allocation. ArXiv, 2019.
- Newell, A., Jiang, L., Wang, C., Li, L.-J., & Deng, J. Feature Partitioning for Efficient Multi-Task Architectures. ArXiv, 2019.
- ✨ [MMoE] Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., & Chi, E. H. Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts. KDD, 2018.
- Rosenbaum, C., Klinger, T., & Riemer, M. Routing Networks: Adaptive Selection of Non-linear Functions for Multi-Task Learning. ICLR, 2018.
- Meyerson, E., & Miikkulainen, R. Beyond Shared Hierarchies: Deep Multitask Learning through Soft Layer Ordering. ICLR, 2018.
- Liang, J., Meyerson, E., & Miikkulainen, R. Evolutionary architecture search for deep multitask networks. Proceedings of the Genetic and Evolutionary Computation Conference, 2018.
- Kim, E., Ahn, C., & Oh, S. NestedNet: Learning Nested Sparse Structures in Deep Neural Networks. CVPR, 2018.
- Andreas, J., Klein, D., & Levine, S. Modular Multitask Reinforcement Learning with Policy Sketches. ICML, 2017.
- Devin, C., Gupta, A., Darrell, T., Abbeel, P., & Levine, S. Learning Modular Neural Network Policies for Multi-Task and Multi-Robot Transfer. ICRA, 2017
- ✨ Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., Pritzel, A., & Wierstra, D. PathNet: Evolution Channels Gradient Descent in Super Neural Networks. ArXiv, 2017.
- Sodhani, S., Zhang, A., & Pineau, J. Multi-Task Reinforcement Learning with Context-based Representations. ICML, 2021.
- Sun, T., Shao, Y., Li, X., Liu, P., Yan, H., Qiu, X., & Huang, X. Learning Sparse Sharing Architectures for Multiple Tasks. AAAI, 2020.
- Lee, H. B., Yang, E., & Hwang, S. J. Deep Asymmetric Multi-task Feature Learning. ICML, 2018.
- Zhang, Y., Wei, Y., & Yang, Q. Learning to Multitask. NeurIPS, 2018.
- ✨ Mallya, A., Davis, D., & Lazebnik, S. Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights. ECCV 2018.
- ✨ Mallya, A., & Lazebnik, S. PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. CVPR, 2018.
- Lee, G., Yang, E., & Hwang, S. J. Asymmetric Multi-task Learning based on Task Relatedness and Confidence. ICML, 2016.
- ✨ [ForkMerge] Jiang, J., Chen, B., Pan, J., Wang, X., Dapeng, L., Jiang, J., & Long, M. ForkMerge: Overcoming Negative Transfer in Multi-Task Learning. ArXiv, 2023.
- [AuxiNash] Shamsian, A., Navon, A., Glazer, N., Kawaguchi, K., Chechik, G., & Fetaya, E. Auxiliary Learning as an Asymmetric Bargaining Game. ArXiv, 2023.
- ✨ Xin, Derrick, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do Current Multi-Task Optimization Methods in Deep Learning Even Help? NeurIPS, 2022.
- [Unitary Scalarization] Kurin, V., De Palma, A., Kostrikov, I., Whiteson, S., & Kumar, M. P. In Defense of the Unitary Scalarization for Deep Multi-Task Learning. NeurIPS, 2022.
- Minimize the multi-task training objective with a standard gradient-based algorithm.
- [Auto-λ] Liu, S., James, S., Davison, A. J., & Johns, E. Auto-Lambda: Disentangling Dynamic Task Relationships. TMLR, 2022.
- [Nash-MTL] Navon, A., Shamsian, A., Achituve, I., Maron, H., Kawaguchi, K., Chechik, G., & Fetaya, E. Multi-Task Learning as a Bargaining Game. ICML, 2022.
- [Rotograd] Javaloy, A., & Valera, I. RotoGrad: Gradient Homogenization in Multitask Learning. ICLR, 2022.
- [RLW / RGW] Lin, B., Ye, F., & Zhang, Y. Reasonable Effectiveness of Random Weighting: A Litmus Test for Multi-Task Learning. TMLR, 2022.
- [CAGrad] Liu, B., Liu, X., Jin, X., Stone, P., & Liu, Q. Conflict-Averse Gradient Descent for Multi-task Learning. NeurIPS, 2021.
- ✨ [Gradient Vaccine] Wang, Z., Tsvetkov, Y., Firat, O., & Cao, Y. Gradient Vaccine: Investigating and Improving Multi-task Optimization in Massively Multilingual Models. ICLR, 2021.
- [IMTL] Liu, L., Li, Y., Kuang, Z., Xue, J.-H., Chen, Y., Yang, W., Liao, Q., & Zhang, W. Towards Impartial Multi-task Learning. ICLR, 2021.
- [IT-MTL] Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., & Finn, C. Measuring and Harnessing Transference in Multi-Task Learning. ArXiv, 2020.
- [GradDrop] Chen, Z., Ngiam, J., Huang, Y., Luong, T., Kretzschmar, H., Chai, Y., & Anguelov, D. Just Pick a Sign: Optimizing Deep Multitask Models with Gradient Sign Dropout. NeurIPS, 2020.
- ✨ [PCGrad] Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., & Finn, C. Gradient Surgery for Multi-Task Learning. NeurIPS, 2020.
- [Dynamic Stop-and-Go (DSG)] Lu, J., Goswami, V., Rohrbach, M., Parikh, D., & Lee, S. 12-in-1: Multi-Task Vision and Language Representation Learning. CVPR, 2020.
- [Online Learning for Auxiliary losses (OL-AUX)] Lin, X., Baweja, H., Kantor, G., & Held, D. Adaptive Auxiliary Task Weighting for Reinforcement Learning. NeurIPS, 2019.
- [PopArt] Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt, S., & Van Hasselt, H. (2019). Multi-Task Deep Reinforcement Learning with PopArt. AAAI, 2019.
- PopArt: Learning values across many orders of magnitude. NeurIPS, 2016.
- [Dynamic Weight Average (DWA)] Liu, S., Johns, E., & Davison, A. J. End-to-End Multi-Task Learning with Attention. CVPR, 2019.
- [Geometric Loss Strategy (GLS)] Chennupati, S., Sistu, G., Yogamani, S., & Rawashdeh, S. A. MultiNet++: Multi-Stream Feature Aggregation and Geometric Loss Strategy for Multi-Task Learning. CVPR 2019 Workshop on Autonomous Driving (WAD).
- [Orthogonal] Suteu, M., & Guo, Y. Regularizing Deep Multi-Task Networks using Orthogonal Gradients. ArXiv, 2019.
- Enforcing near orthogonal gradients
- [LBTW] Liu, S., Liang, Y., & Gitter, A. Loss-Balanced Task Weighting to Reduce Negative Transfer in Multi-Task Learning. AAAI, 2019.
- ✨ [Gradient Cosine Similarity] Du, Y., Czarnecki, W. M., Jayakumar, S. M., Farajtabar, M., Pascanu, R., & Lakshminarayanan, B. Adapting Auxiliary Losses Using Gradient Similarity. ArXiv, 2018.
- Uses a thresholded cosine similarity to determine whether to use each auxiliary task.
- Extension: OL-AUX
- [Revised Uncertainty] Liebel, L., & Körner, M. Auxiliary Tasks in Multi-task Learning. ArXiv, 2018.
- ✨ [GradNorm] Chen, Z., Badrinarayanan, V., Lee, C.-Y., & Rabinovich, A. GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks. ICML, 2018.
- [Dynamic Task Prioritization] Guo, M., Haque, A., Huang, D.-A., Yeung, S., & Fei-Fei, L. Dynamic Task Prioritization for Multitask Learning. ECCV, 2018.
- ✨ [Uncertainty] Kendall, A., Gal, Y., & Cipolla, R. Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. CVPR, 2018.
- ✨ [MGDA] Sener, O., & Koltun, V. Multi-Task Learning as Multi-Objective Optimization. NeurIPS, 2018.
- [AdaLoss] Hu, H., Dey, D., Hebert, M., & Bagnell, J. A. Learning Anytime Predictions in Neural Networks via Adaptive Loss Balancing. ArXiv, 2017.
- The weights are inversely proportional to average of each loss.
- [Task-wise Early Stopping] Zhang, Z., Luo, P., Loy, C. C., & Tang, X. Facial Landmark Detection by Deep Multi-task Learning. ECCV, 2014.
Note:
- We find that AdaLoss, IMTL-l, and Uncertainty are quite similiar in form.
- [MT-Uncertainty Sampling] Pilault, J., Elhattami, A., & Pal, C. J. Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning in NLP Using Fewer Parameters & Less Data. ICLR, 2021.
- [Uniform, Task size, Counterfactual] Glover, J., & Hokamp, C. Task Selection Policies for Multitask Learning. ArXiv, 2019.
- ✨ Maninis, K.-K., Radosavovic, I., & Kokkinos, I. Attentive Single-Tasking of Multiple Tasks. CVPR, 2019.
- Sinha, A., Chen, Z., Badrinarayanan, V., & Rabinovich, A. Gradient Adversarial Training of Neural Networks. ArXiv, 2018.
- Liu, P., Qiu, X., & Huang, X. Adversarial Multi-task Learning for Text Classification. ACL, 2017.
- Phan, H., Tran, N., Le, T., Tran, T., Ho, N., & Phung, D. Stochastic Multiple Target Sampling Gradient Descent. NeurIPS, 2022.
- Ma, P., Du, T., & Matusik, W. Effcient Continuous Pareto Exploration in Multi-Task Learning. ICML, 2020.
- Lin, X., Zhen, H.-L., Li, Z., Zhang, Q.-F., & Kwong, S. Pareto Multi-Task Learning. NeurIPS, 2019.
- ✨ Yang, X., Ye, J., & Wang, X. Factorizing Knowledge in Neural Networks. ECCV, 2022.
- Li, W.-H., Liu, X., & Bilen, H. Universal Representations: A Unified Look at Multiple Task and Domain Learning. ArXiv, 2022.
- Ghiasi, G., Zoph, B., Cubuk, E. D., Le, Q. V., & Lin, T.-Y. Multi-Task Self-Training for Learning General Representations. ICCV, 2021.
- Li, W. H., & Bilen, H. Knowledge Distillation for Multi-task Learning, ECCV-Workshop, 2020.
- ✨ Teh, Yee Whye, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust Multitask Reinforcement Learning. NeurIPS, 2017.
- ✨ Parisotto, Emilio, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning. ICLR, 2016.
- ✨ Rusu, Andrei A., Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy Distillation. ICLR, 2016.
- ✨ Zamir, A., Sax, A., Yeo, T., Kar, O., Cheerla, N., Suri, R., Cao, Z., Malik, J., & Guibas, L. Robust Learning Through Cross-Task Consistency. CVPR, 2020.
- ✨ Ilharco, Gabriel, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. Editing Models with Task Arithmetic. ICLR, 2023.
- Song, Xiaozhuang, Shun Zheng, Wei Cao, James Yu, and Jiang Bian. Efficient and Effective Multi-Task Grouping via Meta Learning on Task Combinations. NeurIPS, 2022.
- Zhang, L., Liu, X., & Guan, H. A Tree-Structured Multi-Task Model Recommender. AutoML-Conf, 2022.
- ✨ Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., & Finn, C. Efficiently Identifying Task Groupings for Multi-Task Learning. NeurIPS, 2021.
- ✨ Vandenhende, S., Georgoulis, S., De Brabandere, B., & Van Gool, L. Branched Multi-Task Networks: Deciding What Layers To Share. BMVC, 2020.
- Bruggemann, D., Kanakis, M., Georgoulis, S., & Van Gool, L. Automated Search for Resource-Efficient Branched Multi-Task Networks. BMVC, 2020.
- ✨ Standley, T., Zamir, A. R., Chen, D., Guibas, L., Malik, J., & Savarese, S. Which Tasks Should Be Learned Together in Multi-task Learning? ICML, 2020.
- Guo, P., Lee, C.-Y., & Ulbricht, D. Learning to Branch for Multi-Task Learning. ICML, 2020.
- Achille, A., Lam, M., Tewari, R., Ravichandran, A., Maji, S., Fowlkes, C., Soatto, S., & Perona, P. Task2Vec: Task Embedding for Meta-Learning. ICCV, 2019.
- Dwivedi, K., & Roig, G. Representation Similarity Analysis for Efficient Task Taxonomy & Transfer Learning. CVPR, 2019.
- Guo, H., Pasunuru, R., & Bansal, M. AutoSeM: Automatic Task Selection and Mixing in Multi-Task Learning. NAACL, 2019.
- ✨ Sanh, V., Wolf, T., & Ruder, S. A Hierarchical Multi-task Approach for Learning Embeddings from Semantic Tasks. AAAI, 2019.
- ✨ Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J., & Savarese, S. Taskonomy: Disentangling Task Transfer Learning. CVPR, 2018.
- Kim, J., Park, Y., Kim, G., & Hwang, S. J. SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model Parallelization. ICML, 2017.
- Alonso, H. M., & Plank, B. When is multitask learning effective? Semantic sequence prediction under varying data conditions. EACL, 2017.
- ✨ Bingel, J., & Søgaard, A. Identifying beneficial task relations for multi-task learning in deep neural networks. EACL, 2017.
- Hand, E. M., & Chellappa, R. Attributes for Improved Attributes: A Multi-Task Network Utilizing Implicit and Explicit Relationships for Facial Attribute Classification. AAAI, 2017.
- ✨ Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., & Feris, R. Fully-adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification. CVPR, 2017.
- Søgaard, A., & Goldberg, Y. Deep multi-task learning with low level tasks supervised at lower layers. ACL, 2016.
- Kang, Z., Grauman, K., & Sha, F. Learning with Whom to Share in Multi-task Feature Learning. ICML, 2011.
- Kumar, A., & Daume III, H. Learning Task Grouping and Overlap in Multi-task Learning. ICML, 2012.
- Wang, H., Zhao, H., & Li, B. Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation. ICML, 2021.
- Tiomoko, M., Ali, H. T., & Couillet, R. Deciphering and Optimizing Multi-Task Learning: A Random Matrix Approach. ICLR, 2021.
- ✨ Tripuraneni, N., Jordan, M. I., & Jin, C. On the Theory of Transfer Learning: The Importance of Task Diversity. NeurIPS, 2020.
- Wu, S., Zhang, H. R., & Re, C. Understanding and Improving Information Transfer in Multi-Task Learning. ICLR, 2020.
- ✨ Bachmann, R., Mizrahi, D., Atanov, A., & Zamir, A. MultiMAE: Multi-modal Multi-task Masked Autoencoders. ECCV, 2022.
- Deng, W., Gould, S., & Zheng, L. What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?. ICML, 2021.
- Lu, J., Goswami, V., Rohrbach, M., Parikh, D., & Lee, S. 12-in-1: Multi-Task Vision and Language Representation Learning. CVPR, 2020.
- Mao, C., Gupta, A., Nitin, V., Ray, B., Song, S., Yang, J., & Vondrick, C. Multitask Learning Strengthens Adversarial Robustness. ECCV, 2020.
- Guo, P., Xu, Y., Lin, B., & Zhang, Y. Multi-Task Adversarial Attack. ArXiv, 2020.
- Clark, K., Luong, M.-T., Khandelwal, U., Manning, C. D., & Le, Q. V. BAM! Born-Again Multi-Task Networks for Natural Language Understanding. ACL, 2019.
- Pramanik, S., Agrawal, P., & Hussain, A. OmniNet: A unified architecture for multi-modal multi-task learning. ArXiv, 2019.
- Zimin, A., & Lampert, C. H. Tasks Without Borders: A New Approach to Online Multi-Task Learning. AMTL Workshop at ICML 2019.
- Meyerson, E., & Miikkulainen, R. Modular Universal Reparameterization: Deep Multi-task Learning Across Diverse Domains. NeurIPS, 2019.
- Meyerson, E., & Miikkulainen, R. Pseudo-task Augmentation: From Deep Multitask Learning to Intratask Sharing---and Back. ICML, 2018.
- Chou, Y.-M., Chan, Y.-M., Lee, J.-H., Chiu, C.-Y., & Chen, C.-S. Unifying and Merging Well-trained Deep Neural Networks for Inference Stage. IJCAI-ECAI, 2018.
- Doersch, C., & Zisserman, A. Multi-task Self-Supervised Visual Learning. ICCV, 2017.
- Smith, V., Chiang, C.-K., Sanjabi, M., & Talwalkar, A. S. Federated Multi-Task Learning. NeurIPS, 2017.
- Kaiser, L., Gomez, A. N., Shazeer, N., Vaswani, A., Parmar, N., Jones, L., & Uszkoreit, J. One Model To Learn Them All. ArXiv, 2017.
- Yang, Y., & Hospedales, T. M. Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives. ArXiv, 2016.
- Yang, Y., & Hospedales, T. M. A Unified Perspective on Multi-Domain and Multi-Task Learning. ICLR, 2015.