-
Notifications
You must be signed in to change notification settings - Fork 0
/
activations.py
78 lines (67 loc) · 1.83 KB
/
activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
def sigmoid(vectors, key):
if key == 'normal':
return 1 / (1 + np.exp(-vectors))
elif key == 'derivative':
return sigmoid(vectors, 'normal') * (1 / sigmoid(vectors, 'normal'))
else:
print('Incorrect key: use either normal or derivative')
def relu(vectors, key):
if key == 'normal':
vectors[vectors <= 0] = 0
return vectors
elif key == 'derivative':
vectors[vectors > 0] = 1
vectors[vectors <= 0] = 0
return vectors
else:
print('Incorrect key: use either normal or derivative')
def leakyRelu(x, key):
if key == 'normal':
if x > 0:
return x
else:
return 0.01*x
elif key == 'derivative':
if x > 0:
return 1
else:
return 0.01
else:
print('Incorrect key: use either normal or derivative')
def elu(x, a, key):
if key == 'normal':
if x >= 0:
return x
else:
return a*(np.exp(x) - 1)
elif key == 'derivative':
if x >= 0:
return 1
else:
return a*(np.exp(x))
else:
print('Incorrect key: use either normal or derivative')
def celu(x, a, key):
if key == 'normal':
if x >= 0:
return x
else:
return a*(np.exp(x/a) - 1)
elif key == 'derivative':
if x >= 0:
return 1
else:
return np.exp(x/a)
else:
print('Incorrect key: use either normal or derivative')
def softmax(x, key):
if key == 'normal':
#print('\n', len(x), x)
e_x = np.exp(x - np.max(x))
#print(e_x, '\n', e_x.sum())
out = e_x / np.sum(e_x)
#print(out)
return out
else:
print('Incorrect key: use either normal or derivative')