Skip to content

Latest commit

 

History

History
528 lines (432 loc) · 14.7 KB

README.md

File metadata and controls

528 lines (432 loc) · 14.7 KB

Data Mining with R

Table of Contents

Import libs:

library(caret)
library(data.table)
library(dplyr)
library(PerformanceAnalytics)
library(rpart.plot)

Data Overview

Data Set Characteristics: Number of Instances: Attribute Characteristics: Number of Attributes: Associated Tasks:
Multivariate 1372 Real 5 Classification

Dataset information: Data were extracted from images that were taken from genuine and forged banknote-like specimens. For digitization, an industrial camera usually used for print inspection was used. The final images have 400 x 400 pixels. Due to the object lens and distance to the investigated object gray-scale pictures with a resolution of about 660 dpi were gained. Wavelet Transform tool were used to extract features from images.

Attribute information:

  1. variance of Wavelet Transformed image (type: continuous)
  2. skewness of Wavelet Transformed image (type: continuous)
  3. curtosis of Wavelet Transformed image (type: continuous)
  4. entropy of image (type: continuous)
  5. class (type: integer)

Data source: https://archive.ics.uci.edu/ml/datasets/banknote+authentication

Load data_banknote_authentication.txt file:

url = paste('https://archive.ics.uci.edu/ml/machine-learning-databases/00267/',
            'data_banknote_authentication.txt', sep='')
df = data.frame(fread(url))
names(df) = c('variance', 'skewness', 'curtosis', 'entropy', 'class')

Check size of df dataframe:

nrow(df)

Output:

1372

Show the first part of df dataframe:

head(df, 5)
varianceskewnesscurtosisentropyclass
3.62160 8.6661 -2.8073 -0.446990
4.54590 8.1674 -2.4586 -1.462100
3.86600 -2.6383 1.9242 0.106450
3.45660 9.5228 -4.0112 -3.594400
0.32924 -4.4552 4.5718 -0.988800

Show the last part of df dataframe:

tail(df, 5)
varianceskewnesscurtosisentropyclass
1368 0.40614 1.34920-1.4501 -0.55949 1
1369-1.38870 -4.87730 6.4774 0.34179 1
1370-3.75030 -13.4586017.5932 -2.77710 1
1371-3.56370 -8.3827012.3930 -1.28230 1
1372-2.54190 -0.65804 2.6842 1.19520 1

Summary Statistics

Mean

print(noquote(paste0('Mean. Variance of Wavelet Transformed image: ', mean(df$variance))))
print(noquote(paste0('Mean. Skewness of Wavelet Transformed image: ', mean(df$skewness))))
print(noquote(paste0('Mean. Curtosis of Wavelet Transformed image: ', mean(df$curtosis))))
print(noquote(paste0('Mean. Entropy of image: ', mean(df$entropy))))

Output:

[1] Mean. Variance of Wavelet Transformed image: 0.433735257069971
[1] Mean. Skewness of Wavelet Transformed image: 1.92235312063936
[1] Mean. Curtosis of Wavelet Transformed image: 1.39762711726676
[1] Mean. Entropy of image: -1.19165652004373

Median

print(noquote(paste0('Median. Variance of Wavelet Transformed image: ',
                     median(df$variance))))
print(noquote(paste0('Median. Skewness of Wavelet Transformed image: ',
                     median(df$skewness))))
print(noquote(paste0('Median. Curtosis of Wavelet Transformed image: ',
                     median(df$curtosis))))
print(noquote(paste0('Median. Entropy of image: ', median(df$entropy))))

Output:

[1] Median. Variance of Wavelet Transformed image: 0.49618
[1] Median. Skewness of Wavelet Transformed image: 2.31965
[1] Median. Curtosis of Wavelet Transformed image: 0.61663
[1] Median. Entropy of image: -0.58665

All-in-One

print(noquote('Summary:'))
summary(select(df, -class))

Output:

[1] Summary:

   variance          skewness          curtosis          entropy
Min.   :-7.0421   Min.   :-13.773   Min.   :-5.2861   Min.   :-8.5482
1st Qu.:-1.7730   1st Qu.: -1.708   1st Qu.:-1.5750   1st Qu.:-2.4135
Median : 0.4962   Median :  2.320   Median : 0.6166   Median :-0.5867
Mean   : 0.4337   Mean   :  1.922   Mean   : 1.3976   Mean   :-1.1917
3rd Qu.: 2.8215   3rd Qu.:  6.815   3rd Qu.: 3.1793   3rd Qu.: 0.3948
Max.   : 6.8248   Max.   : 12.952   Max.   :17.9274   Max.   : 2.4495

Correlation

cor(df)
varianceskewnesscurtosisentropyclass
variance 1.0000000 0.2640255 -0.3808500 0.27681670-0.72484314
skewness 0.2640255 1.0000000 -0.7868952 -0.52632084-0.44468776
curtosis-0.3808500 -0.7868952 1.0000000 0.31884089 0.15588324
entropy 0.2768167 -0.5263208 0.3188409 1.00000000-0.02342368
class-0.7248431 -0.4446878 0.1558832 -0.02342368 1.00000000
chart.Correlation(select(df, -class), histogram=TRUE)

correlation.png

Graphics

Histograms

par(mfrow=c(2,2))
hist(df$variance, main='Histogram of Variance',
     xlab='Variance of Wavelet Transformed Image')
hist(df$skewness, main='Histogram of Skewness',
     xlab='Skewness of Wavelet Transformed Image')
hist(df$curtosis, main='Histogram of Curtosis',
     xlab='Curtosis of Wavelet Transformed Image')
hist(df$entropy, main='Histogram of Entropy',
     xlab='Entropy of Image')

histograms.png

Boxplots

par(mfrow=c(2,2))
boxplot(df$variance, data=df, main='Boxplot. Variance', horizontal=TRUE)
boxplot(df$skewness, data=df, main='Boxplot. Skewness', horizontal=TRUE)
boxplot(df$curtosis, data=df, main='Boxplot. Curtosis', horizontal=TRUE)
boxplot(df$entropy, data=df, main='Boxplot. Entropy', horizontal=TRUE)

boxplots.png

Near Zero Variance Predictors

nearZeroVar(select(df, -class), saveMetrics=TRUE)
freqRatiopercentUniquezeroVarnzv
variance1.25 97.52187FALSE FALSE
skewness1.20 91.54519FALSE FALSE
curtosis1.00 92.56560FALSE FALSE
entropy1.00 84.25656FALSE FALSE

Linear Combinations

findLinearCombos(select(df, -class))

Output:

$linearCombos
list()

$remove
NULL

Highly Correlated Variables

df$class = as.character(ifelse(df$class=='1', 'Y', 'N'))
df2 = select(df, -class)
cor_matrix = cor(df2)
print(noquote('Highly correlated variables:'))
summary(cor_matrix[upper.tri(cor_matrix)]) # upper triangular part of a matrix

Output:

[1] Highly correlated variables:

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.
-0.78690 -0.48995 -0.05841 -0.13906  0.27362  0.31884
high_cor_var = findCorrelation(cor_matrix, cutoff = 0.75) # check var above 0.75
print(noquote(paste0('Highly correlated variables: ', names(df2)[high_cor_var])))

Output:

[1] Highly correlated variables: skewness

Delete highly correlated skewness column from dataframe:

df2 = select(df2, -skewness)
cor_matrix = cor(df2)
print(noquote('Highly correlated variables:'))
summary(cor_matrix[upper.tri(cor_matrix)]) # upper triangular part of a matrix
df = cbind.data.frame(df2, class = df$class) # add class

Output:

[1] Highly correlated variables:

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.
-0.38085 -0.05202  0.27682  0.07160  0.29783  0.31884

Distribution

print(noquote('Distribution:'))
table(df$class)

Output:

[1] Distribution:

  N   Y
762 610
class_freq = data.frame(table(df$class))
names(class_freq) = c('class', 'freq')
percent_chart = cbind(class_freq,
                      percent=round((class_freq$freq/sum(class_freq$freq))*100, 1))
percent_chart
classfreqpercent
N 762 55.5
Y 610 44.5
slices = percent_chart$percent
lbls = c('N', 'Y')
pct = round(slices/sum(slices)*100, 1)
lbls = paste(lbls, pct) # add values of pct to labels
lbls = paste(lbls, '%', sep='') # add % char to labels
pie(slices, labels=lbls, radius=1, main='Pie Chart of Distribution',
    clockwise=TRUE)

pie_chart.png

featurePlot(x=select(df, -class), y=df$class, plot='box')

feature_plot.png

Decision Tree

rtree_set = rpart(class ~ ., df)
prp(rtree_set)

decision_tree.png

Classification

ml_map

Split the data to train and test sets:

train_ind = createDataPartition(df$class, p=0.7, list=FALSE) 
data_train = data.frame(df[train_ind, ])
data_test = data.frame(df[-train_ind, ])
print(noquote('Train:'))
table(data_train$class)
print(noquote('Test:'))
table(data_test$class)

Output:

[1] Train:

  N   Y
534 427

[1] Test:

  N   Y
228 183

Choose validation method for the test of model:

valid_par = trainControl(method='repeatedcv', number=5, repeats=10, p=0.70, preProc='range') 

SVM

mod_svm = train(class ~ ., data=data_train, trControl=valid_par, method='svmRadial')
mod_svm

Output:

Support Vector Machines with Radial Basis Function Kernel 

961 samples
  3 predictors
  2 classes: 'N', 'Y' 

No pre-processing
Resampling: Cross-Validated (5 fold, repeated 10 times) 
Summary of sample sizes: 768, 769, 770, 769, 768, 770, ... 
Resampling results across tuning parameters:

  C     Accuracy   Kappa    
  0.25  0.9785620  0.9568214
  0.50  0.9807452  0.9612074
  1.00  0.9815764  0.9628818

Tuning parameter 'sigma' was held constant at a value of 0.8345372
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were sigma = 0.8345372 and C = 1.

KNN

mod_knn = train(class ~. , data=data_train, trControl=valid_par, method='knn')
mod_knn

Output:

k-Nearest Neighbors

961 samples
  3 predictors
  2 classes: 'N', 'Y'

No pre-processing
Resampling: Cross-Validated (5 fold, repeated 10 times)
Summary of sample sizes: 768, 769, 769, 769, 769, 768, ...
Resampling results across tuning parameters:

  k  Accuracy   Kappa
  5  0.9761700  0.9519131
  7  0.9766871  0.9529962
  9  0.9748131  0.9492504

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 7.

Show summary:

print(noquote('Summary:'))
mod_results = resamples(list(SVM=mod_svm, KNN=mod_knn))
summary(mod_results)

Output:

[1] Summary:

Call:
summary.resamples(object = mod_results)

Models: SVM, KNN
Number of resamples: 50

Accuracy
         Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's
SVM 0.9633508 0.9740933 0.9843750 0.9815764 0.9882606 1.0000000    0
KNN 0.9581152 0.9687905 0.9740933 0.9766871 0.9843750 0.9947917    0

Kappa
         Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's
SVM 0.9264050 0.9478632 0.9684487 0.9628818 0.9762997 1.0000000    0
KNN 0.9157941 0.9372235 0.9476255 0.9529962 0.9684487 0.9894575    0

SVM vs KNN

bwplot(mod_results, scales=list(x=list(relation='free'), y=list(relation='free')))

svm_vs_knn.png

Test models:

test = select(data_test, -class)
test_sum = data_test$class 
mod_predict_svm = predict(mod_svm, test)
print(noquote('SMV:'))
confusionMatrix(mod_predict_svm, test_sum)
mod_predict_knn = predict(mod_knn, test)
print(noquote('KNN:'))
confusionMatrix(mod_predict_knn, test_sum)

Output:

[1] SMV:

Confusion Matrix and Statistics

          Reference
Prediction   N   Y
         N 222   1
         Y   6 182

               Accuracy : 0.983
                 95% CI : (0.9652, 0.9931)
    No Information Rate : 0.5547
    P-Value [Acc > NIR] : <2e-16

                  Kappa : 0.9656
 Mcnemar's Test P-Value : 0.1306

            Sensitivity : 0.9737
            Specificity : 0.9945
         Pos Pred Value : 0.9955
         Neg Pred Value : 0.9681
             Prevalence : 0.5547
         Detection Rate : 0.5401
   Detection Prevalence : 0.5426
      Balanced Accuracy : 0.9841

       'Positive' Class : N

[1] KNN:

Confusion Matrix and Statistics

          Reference
Prediction   N   Y
         N 223   2
         Y   5 181

               Accuracy : 0.983
                 95% CI : (0.9652, 0.9931)
    No Information Rate : 0.5547
    P-Value [Acc > NIR] : <2e-16
 
                  Kappa : 0.9656
 Mcnemar's Test P-Value : 0.4497

            Sensitivity : 0.9781
            Specificity : 0.9891
         Pos Pred Value : 0.9911
         Neg Pred Value : 0.9731
             Prevalence : 0.5547
         Detection Rate : 0.5426
   Detection Prevalence : 0.5474
      Balanced Accuracy : 0.9836

       'Positive' Class : N