-
Notifications
You must be signed in to change notification settings - Fork 9
/
hibler.tex
396 lines (388 loc) · 14.5 KB
/
hibler.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
\chapter{Model Formulation}
\label{Phys}
\section {Equations of motion}
The equations of motion for the ice model in Cartesian coordinates can
be written \citep[from][]{Hibler79}:
\begin{equation}
M {\partial u \over \partial t} + M \vec{v} \cdot \nabla u = Mfv
- Mg {\partial H \over \partial x} + \tau_a^x + \tau_w^x + {\cal F}_x
\label{st1}
\end{equation}
\vspace{.2cm}
\begin{equation}
M {\partial v \over \partial t} + M \vec{v} \cdot \nabla v = - Mfu
- Mg {\partial H \over \partial y} + \tau_a^y + \tau_w^y + {\cal F}_y
\label{st2}
\end{equation}
\vspace{.2cm}
\begin{equation}
\sigma_{ij} = 2 \eta \epsilon_{ij} + (\zeta - \eta) \epsilon_{kk}
\delta_{ij} - {P \over 2} \delta_{ij}
\label{stress1}
\end{equation}
\vspace{.2cm}
\begin{equation}
{\cal F}_x = {\partial \over \partial x} \left[ (\eta + \zeta)
{\partial u \over \partial x} + (\zeta - \eta)
{\partial v \over \partial y} - P/2 \right] +
{\partial \over \partial y} \left[ \eta \left(
{\partial u \over \partial y} + {\partial v \over \partial x}
\right) \right]
\label{fx1}
\end{equation}
\vspace{.2cm}
\begin{equation}
{\cal F}_y = {\partial \over \partial y} \left[ (\eta + \zeta)
{\partial v \over \partial y} + (\zeta - \eta)
{\partial u \over \partial x} - P/2 \right] +
{\partial \over \partial x} \left[ \eta \left(
{\partial u \over \partial y} + {\partial v \over \partial x}
\right) \right]
\label{fy1}
\end{equation}
\vspace{.2cm}
\begin{equation}
{\partial h \over \partial t} =
- {\partial (uh) \over \partial x} - {\partial (vh) \over \partial y}
+ S_h + {\cal D}
\label{st3a}
\end{equation}
\vspace{.2cm}
\begin{equation}
{\partial A \over \partial t} =
- {\partial (uA) \over \partial x} - {\partial (vA) \over \partial y}
+ S_A + {\cal D}
\label{st3b}
\end{equation}
\vspace{.2cm}
\begin{equation}
S_h = A \, G \! \left( {h \over A} \right) + (1-A)G(0)
\end{equation}
{\samepage
\[
S_A = \left\{ \begin{array}{cl}
{G(0)(1-A) \over h_o}, & \mbox{if \quad} G(0) > 0, \\
0, & \mbox{if \quad} G(0) < 0,
\end{array} \right.
\]
\begin{equation}
+ \left\{ \begin{array}{cl}
0, & \mbox{if \quad} S_h > 0, \\
{S_h A \over 2h} & \mbox{if \quad} S_h < 0,
\end{array} \right.
\end{equation}
}
where, in standard notation:
\begin{center}
($u,v$) = the ($x,y$) components of vector velocity $\vec{v}$ \\
\vspace{1mm}
$h(x,y,t)$ = ice thickness \\
\vspace{1mm}
$h_o$ = ice cutoff thickness \\
\vspace{1mm}
$A(x,y,t)$ = ice concentration \\
\vspace{1mm}
$M(x,y,t)$ = ice mass (density times thickness) \\
\vspace{1mm}
$G(h)$ = growth rate of ice of thickness $h$ \\
\vspace{1mm}
$H(x,y,t)$ = height of the ocean surface \\
\vspace{1mm}
$\zeta(x,y,t)$ = nonlinear bulk viscosity \\
\vspace{1mm}
$\eta(x,y,t)$ = nonlinear shear viscosity \\
\vspace{1mm}
$f(x,y)$ = Coriolis parameter \\
\vspace{1mm}
$g$ = acceleration of gravity \\
\vspace{1mm}
$\sigma_{ij}(x,y,t)$ = stress tensor \\
\vspace{1mm}
$\epsilon_{ij}(x,y,t)$ = strain rate tensor \\
\vspace{1mm}
$P(x,y,t)$ = ice pressure or strength \\
\vspace{1mm}
($\tau_a, \tau_w$) = air and water stresses \\
\vspace{1mm}
(${\cal F}_x, {\cal F}_y$) = viscous-plastic terms \\
\vspace{1mm}
($S_h, S_A$) = thermodynamic terms
\end{center}
and
\begin{center}
(${\cal D}_h, {\cal D}_A$) = diffusive terms.
\end{center}
Equations (\ref{st1}) and (\ref{st2}) express the momentum balance in
the $x$ and $y$ directions, respectively. The time evolution of the
thickness and concentration fields, $h(x,y,t)$ and $A(x,y,t)$, are
governed by the advective-diffusive equations (\ref{st3a}) and
(\ref{st3b}). The viscous-plastic terms (\ref{fx1}) and (\ref{fy1})
are found by taking the divergence of the stress tensor
(\ref{stress1}). For the moment, the effects of dissipation will be
represented by the schematic terms ${\cal D}$, which are the sum of a
Laplacian and biharmonic diffusion.
%\section{Horizontal boundary conditions}
%As distributed, the model configuration is that of a periodic channel.
%If the variable \code{perchan} is set to \code{false} then the boundary
%conditions are that of a closed basin. For any other configuration it
%is the responsibility of the user to provide the appropriate boundary
%conditions on $u,v,T,S,$ and $\psi$, where $\psi$ is the transport
%streamfunction. At every time step the subroutines \code{bcs} and
%\code{bcpsi} are called to fill in the necessary boundary values.
%If the biharmonic friction is used, a
%higher order boundary condition must also be provided. The model
%currently has this built into the code where the biharmonic terms are
%calculated. The high order boundary conditions used are
%${\partial \over \partial x} \left( {h\nu \over mn} {\partial
%^2 u \over \partial x^2} \right) = 0$
%on the eastern and western boundaries and
%${\partial \over \partial y} \left( {h\nu \over mn} {\partial
%^2 u \over \partial y^2} \right) = 0$ on the northern
%and southern boundaries. The boundary conditions for $v,T,$ and $S$
%are similar. These boundary conditions were chosen because they
%preserve the property of no gain or loss of momentum, temperature,
%or salt across a closed boundary.
\section{Horizontal curvilinear coordinates}
In many applications of interest (e.g., flow adjacent to a coastal
boundary), the fluid may be confined horizontally within an
irregular region. In such problems, a horizontal coordinate system
which conforms to the irregular lateral boundaries is advantageous.
It is often also true in many geophysical problems that the
simulated flow fields have regions of enhanced structure (e.g.,
boundary currents or fronts) which occupy a relatively small
fraction of the physical /computational domain. In these problems,
added efficiency can be gained by placing more (computational)
resolution in such regions.
The requirement for a boundary-following coordinate system and for a
laterally variable grid resolution can both be met (for suitably
smooth domains) by introducing an appropriate orthogonal coordinate
transformation in the horizontal. Let the new coordinates be $\xi_1
(x,y)$ and $\xi_2(x,y)$ where the relationship of horizontal arc
length to the differential distance is given by:
\begin{equation}
(ds)_{\xi_1} = \left( {1 \over m} \right) d \xi_1
\end{equation}
\begin{equation}
(ds)_{\xi_2} = \left( {1 \over n} \right) d \xi_2
\end{equation}
Here, $m(\xi_1,\xi_2)$ and $n(\xi_1,\xi_2)$ are the scale factors which
relate the differential distances $(\Delta \xi_1,\Delta \xi_2)$ to the
actual (physical) arc lengths.
It is helpful to write the equations in vector notation and to use
the formulas for div, grad, and curl in curvilinear coordinates
\citep[see][Appendix 2]{Batchelor}:
\begin{equation}
\nabla \phi = \hat{\xi_1} m {\partial \phi \over \partial \xi_1} +
\hat{\xi_2} n {\partial \phi \over \partial \xi_2}
\end{equation}
\begin{equation}
\nabla \cdot \vec{a} = mn \left[
{\partial \over \partial \xi_1} \!\! \left( {a \over n} \right) +
{\partial \over \partial \xi_2} \!\! \left( {b \over m} \right)
\right]
\end{equation}
\begin{equation}
\nabla \times \vec{a} = mn \left| \begin{array}{ccc}
\vspace{1 mm}
{\hat{\xi}_1 \over m} & {\hat{\xi}_2 \over n} & \hat{k} \\
\vspace{1 mm}
{\partial \over \partial \xi_1} &
{\partial \over \partial \xi_2} &
{\partial \over \partial \xi_3} \\
{a \over m} & {b \over n} & c
\end{array} \right|
\end{equation}
\begin{equation}
\nabla^2 \phi = \nabla \cdot \nabla \phi = mn \left[
{\partial \over \partial \xi_1} \!\! \left( {m \over n}
{\partial \phi \over \partial \xi_1} \right) +
{\partial \over \partial \xi_2} \!\! \left( {n \over m}
{\partial \phi \over \partial \xi_2} \right) \right]
\end{equation}
where $\phi$ is a scalar and $\vec{a}$ is a vector with components
$a$, $b$, and $c$.
Denoting the velocity components in the new coordinate system by
\begin{equation}
\vec{v} \cdot \hat{\xi_1} = u
\end{equation}
and
\begin{equation}
\vec{v} \cdot \hat{\xi_2} = v
\end{equation}
the equations of motion (\ref{st1})-(\ref{st3b}) can be re-written
\citep[see, e.g.,][]{AL}:
{\samepage
\[
{\partial u \over \partial t} +
m u {\partial u \over \partial \xi_1} +
n v {\partial u \over \partial \xi_2} =
\left\{f + mn \left[ v \frac{\partial}{\partial \xi_1}
\!\! \left( \frac{1}{n} \right) - u \frac{\partial}{\partial \xi_2}
\!\! \left( \frac{1}{m} \right) \right] \right\} v
\]
\begin{equation}
- gm {\partial H \over \partial \xi_1} +
{1 \over M} \left( \tau_a^{\xi_1} + \tau_w^{\xi_1} + {\cal F}_{\xi_1}
\right)
\label{st13}
\end{equation}
}
\vspace{.2cm}
{\samepage
\[
{\partial v \over \partial t} +
m u {\partial v \over \partial \xi_1} +
n v {\partial v \over \partial \xi_2} =
- \left\{f + mn \left[ v \frac{\partial}{\partial \xi_1}
\!\! \left( \frac{1}{n} \right) - u \frac{\partial}{\partial \xi_2}
\!\! \left( \frac{1}{m} \right) \right] \right\} u
\]
\begin{equation}
- gn {\partial H \over \partial \xi_2} +
{1 \over M} \left( \tau_a^{\xi_2} + \tau_w^{\xi_2} + {\cal F}_{\xi_2}
\right)
\label{st14}
\end{equation}
}
\vspace{.2cm}
\begin{equation}
{\partial h \over \partial t} =
- mn \left[ {\partial \over \partial \xi_1} \!\! \left( {hu \over n}
\right ) + {\partial \over \partial \xi_2} \!\! \left( {hv \over m}
\right) \right] + S_h + {\cal D}_h
\label{st15}
\end{equation}
\vspace{.2cm}
\begin{equation}
{\partial A \over \partial t} =
- mn \left[ {\partial \over \partial \xi_1} \!\! \left( {Au \over n}
\right ) + {\partial \over \partial \xi_2} \!\! \left( {Av \over m}
\right) \right] + S_A + {\cal D}_A
\label{st16}
\end{equation}
\vspace{.2cm}
$S_h$ and $S_A$ remain unchanged.
The viscous-plastic terms can be derived from equation
(\ref{stress1}). In curvilinear coordinates the strain rate tensor
can be writen as:
\begin{equation}
\epsilon_{11} = m {\partial u \over \partial \xi_1} +
vmn {\partial \over \partial \xi_2} \!\! \left( {1 \over m} \right)
\end{equation}
\begin{equation}
\epsilon_{12} = e_{21} = {1 \over 2} \left[
{m \over n} {\partial \left( nv \right) \over \partial \xi_1}
+ {n \over m} {\partial \left( mu \right) \over \partial \xi_2}
\right]
\end{equation}
\begin{equation}
\epsilon_{22} = n {\partial v \over \partial \xi_2} +
umn {\partial \over \partial \xi_1} \!\! \left( {1 \over n} \right)
\end{equation}
In curvilinear coordinates the divergence of symmetric tensor {\bf T}
is:
\[
\nabla \cdot \mbox{\bf T} =
\hat{\xi_1} \left[ m
{\partial \mbox{\bf T}_{11} \over \partial \xi_1}
+ n {\partial \mbox{\bf T}_{12} \over \partial \xi_2}
+ \mbox{\bf T}_{11} mn {\partial \over \partial \xi_1} \!\!
\left( {1 \over n} \right) \right. \mbox{\hspace{2 cm}}
\]
\[
\mbox{\hspace{2 cm}} \left. + 2 \mbox{\bf T}_{12} mn
{\partial \over \partial \xi_2} \!\! \left( {1 \over m} \right)
- \mbox{\bf T}_{22} mn
{\partial \over \partial \xi_1} \!\! \left( {1 \over n} \right)
\right]
\]
\[
+ \hat{\xi_2} \left[ m
{\partial \mbox{\bf T}_{12} \over \partial \xi_1}
+ n {\partial \mbox{\bf T}_{22} \over \partial \xi_2}
- \mbox{\bf T}_{11} mn {\partial \over \partial \xi_2} \!\!
\left( {1 \over m} \right) \right. \mbox{\hspace{2 cm}}
\]
\begin{equation}
\mbox{\hspace{2 cm}} \left. + 2 \mbox{\bf T}_{12} mn
{\partial \over \partial \xi_1} \!\! \left( {1 \over n} \right)
+ \mbox{\bf T}_{22} mn
{\partial \over \partial \xi_2} \!\! \left( {1 \over m} \right)
\right]
\end{equation}
A more general expression for derivatives of tensors is given by
\citet{Aris} in terms of Christoffel symbols.
The viscous-plastic terms become:
\[
{\cal F}_{\xi_1} = m {\partial \over \partial \xi_1} \left[
(\zeta - \eta ) mn {\partial \over \partial \xi_1} \!\! \left(
{u \over n} \right) \right] +
m {\partial \over \partial \xi_1} \left[
(\zeta - \eta ) mn {\partial \over \partial \xi_2} \!\! \left(
{v \over m} \right) \right] - {m \over 2}
{\partial P \over \partial \xi_1}
\]
\[
+ 2 m {\partial \over \partial \xi_1} \left[ \eta m
{\partial u \over \partial \xi_1} + \eta v mn
{\partial \over \partial \xi_2} \!\! \left( {1 \over m} \right)
\right]
+ n {\partial \over \partial \xi_2} \left[ \eta {m \over n}
{\partial (nv) \over \partial \xi_1} + \eta {n \over m}
{\partial (mu) \over \partial \xi_2} \right]
\]
\[
+ 2 \eta m^2 n {\partial u \over \partial \xi_1}
{\partial \over \partial \xi_1} \!\! \left( {1 \over n} \right)
+ 2 \eta v m^2 n^2
{\partial \over \partial \xi_2} \!\! \left( {1 \over m} \right)
{\partial \over \partial \xi_1} \!\! \left( {1 \over n} \right)
+ 2 \eta m^2 {\partial (nv) \over \partial \xi_1}
{\partial \over \partial \xi_2} \!\! \left( {1 \over m} \right)
\]
\begin{equation}
+ 2 \eta n^2 {\partial (mu) \over \partial \xi_2}
{\partial \over \partial \xi_2} \!\! \left( {1 \over m} \right)
- 2 \eta m n^2 {\partial v \over \partial \xi_2}
{\partial \over \partial \xi_1} \!\! \left( {1 \over n} \right)
- 2 \eta u m^2 n^2 \left[
{\partial \over \partial \xi_1} \!\! \left( {1 \over n} \right)
\right]^2
\end{equation}
\vspace{2 mm}
\[
{\cal F}_{\xi_2} = n {\partial \over \partial \xi_2} \left[
(\zeta - \eta ) mn {\partial \over \partial \xi_1} \!\! \left(
{u \over n} \right) \right] +
n {\partial \over \partial \xi_2} \left[
(\zeta - \eta ) mn {\partial \over \partial \xi_2} \!\! \left(
{v \over m} \right) \right] - {n \over 2}
{\partial P \over \partial \xi_2}
\]
\[
+ m {\partial \over \partial \xi_1} \left[ \eta {m \over n}
{\partial (nv) \over \partial \xi_1} + \eta {n \over m}
{\partial (mu) \over \partial \xi_2} \right]
+ 2n {\partial \over \partial \xi_2} \left[ \eta n
{\partial v \over \partial \xi_2} + \eta u mn
{\partial \over \partial \xi_1} \!\! \left( {1 \over n} \right)
\right]
\]
\[
- 2 \eta m^2 n {\partial u \over \partial \xi_1}
{\partial \over \partial \xi_2} \!\! \left( {1 \over m} \right)
- 2 \eta v m^2 n^2 \left[
{\partial \over \partial \xi_2} \!\! \left( {1 \over m} \right)
\right]^2
+ 2 \eta m^2 {\partial (nv) \over \partial \xi_1}
{\partial \over \partial \xi_1} \!\! \left( {1 \over n} \right)
\]
\begin{equation}
+ 2 \eta n^2 {\partial (mu) \over \partial \xi_2}
{\partial \over \partial \xi_1} \!\! \left( {1 \over n} \right)
+ 2 \eta m n^2 {\partial v \over \partial \xi_2}
{\partial \over \partial \xi_2} \!\! \left( {1 \over m} \right)
+ 2 \eta u m^2 n^2
{\partial \over \partial \xi_2} \!\! \left( {1 \over m} \right)
{\partial \over \partial \xi_1} \!\! \left( {1 \over n} \right)
\end{equation}